把代码从QT移植到MFC的时候,这个文件vecmat.h,出现了如下错误:
error C2143: syntax error : missing ',' before ')'
error C2143: syntax error : missing ';' before '}'
error C2059: syntax error : ')'
fatal error C1004: unexpected end-of-file found
等等。
vecmat.h源代码如下:
#ifndef VECMAT_H
# define VECMAT_H
# include <cmath>
# include <vector>
# include <iostream>
namespace vecmat {
namespace internal {
template <bool B>
struct is_false {};
template <>
struct is_false<false> {
static inline void ensure() {}
};
} // end of namespace internal
//
// Vector class
// - T: value type
// - N: dimension
//
/////////////////////////////////////////////////////////////////////////////
template <class T, unsigned N>
class Vector
{
public:
typedef T value_type;
// constructors
inline Vector() {
for (unsigned i = 0; i < N; i++)
_coord[i] = 0;
}
~Vector() {
internal::is_false<(N == 0)>::ensure();
}
template <class U>
explicit inline Vector(const U tab[N]) {
for (unsigned i = 0; i < N; i++)
_coord[i] = (T)tab[i];
}
template <class U>
explicit inline Vector(const std::vector<U>& tab) {
for (unsigned i = 0; i < N; i++)
_coord[i] = (T)tab[i];
}
template <class U>
explicit inline Vector(const Vector<U, N>& v) {
for (unsigned i = 0; i < N; i++)
_coord[i] = (T)v[i];
}
// accessors
inline value_type operator[](const unsigned i) const {
return _coord[i];
}
inline value_type& operator[](const unsigned i) {
return _coord[i];
}
static inline unsigned dim() {
return N;
}
// various useful methods
inline value_type norm() const {
return (T)sqrt(squareNorm());
}
inline value_type squareNorm() const {
return (*this) * (*this);
}
inline Vector<T, N>& normalize() {
value_type n = norm();
for (unsigned i = 0; i < N; i++)
_coord[i] /= n;
return *this;
}
inline Vector<T, N>& normalizeSafe() {
value_type n = norm();
if (n)
for (unsigned i=0; i < N; i++)
_coord[i] /= n;
return *this;
}
inline Vector<T, N>& min(const Vector<T, N>& v) {
for (unsigned i=0; i < N; i++)
if (_coord[i] > v._coord[i])
_coord[i] = v._coord[i];
return *this;
}
inline Vector<T, N>& max(const Vector<T, N>& v) {
for (unsigned i=0; i < N; i++)
if (_coord[i] < v._coord[i])
_coord[i] = v._coord[i];
return *this;
}
inline const value_type* address() const {
return _coord;
}
// classical operators
template <class U>
inline Vector<T, N>& operator=(const Vector<U, N>& v) {
if (this != &v)
for (unsigned i = 0; i < N; i++)
_coord[i] = (T)v[i];
return *this;
}
template <class U>
inline Vector<T, N>& operator+=(const Vector<U, N>& v) {
for (unsigned i = 0 ; i < N; i++)
_coord[i] += (T)v[i];
return *this;
}
template <class U>
inline Vector<T, N>& operator-=(const Vector<U, N>& v) {
for (unsigned i = 0 ; i < N; i++)
_coord[i] -= (T)v[i];
return *this;
}
template <class U>
inline Vector<T, N>& operator*=(const U r) {
for (unsigned i = 0 ; i < N; i++)
_coord[i] *= r;
return *this;
}
template <class U>
inline Vector<T, N>& operator/=(const U r) {
if (r)
for (unsigned i = 0 ; i < N; i++)
_coord[i] /= r;
return *this;
}
inline bool operator==(const Vector<T, N>& v) const {
for(unsigned i = 0; i < N; i++)
if (_coord[i] != v[i])
return false;
return true;
}
inline bool operator!=(const Vector<T, N>& v) const {
for(unsigned i = 0; i < N; i++)
if (_coord[i] != v[i])
return true;
return false;
}
inline bool operator<(const Vector<T, N>& v) const {
for (unsigned i = 0; i<N; i++) {
if (_coord[i] < v[i])
return true;
if (_coord[i] > v[i])
return false;
if (_coord[i] == v[i])
continue;
}
return false;
}
inline bool operator>(const Vector<T, N>& v) const {
for (unsigned i=0; i<N; i++) {
if(_coord[i] > v[i])
return true;
if(_coord[i] < v[i])
return false;
if(_coord[i] == v[i])
continue;
}
return false;
}
protected:
value_type _coord[N];
enum {
_dim = N,
};
};
//
// Vec2 class (2D Vector)
// - T: value type
//
/////////////////////////////////////////////////////////////////////////////
template <class T>
class Vec2 : public Vector<T, 2>
{
public:
typedef typename Vector<T, 2>::value_type value_type;
inline Vec2() : Vector<T, 2>() {}
template <class U>
explicit inline Vec2(const U tab[2]) : Vector<T, 2>(tab) {}
template <class U>
explicit inline Vec2(const std::vector<U>& tab) : Vector<T, 2>(tab) {}
template <class U>
inline Vec2(const Vector<U, 2>& v) : Vector<T, 2>(v) {}
inline Vec2(const value_type x,
const value_type y = 0) : Vector<T, 2>() {
this->_coord[0] = (T)x;
this->_coord[1] = (T)y;
}
inline value_type x() const {
return this->_coord[0];
}
inline value_type& x() {
return this->_coord[0];
}
inline value_type y() const {
return this->_coord[1];
}
inline value_type& y() {
return this->_coord[1];
}
};
//
// HVec3 class (3D Vector in homogeneous coordinates)
// - T: value type
//
/////////////////////////////////////////////////////////////////////////////
template <class T>
class HVec3 : public Vector<T, 4>
{
public:
typedef typename Vector<T, 4>::value_type value_type;
inline HVec3() : Vector<T, 4>() {}
template <class U>
explicit inline HVec3(const U tab[4]) : Vector<T, 4>(tab) {}
template <class U>
explicit inline HVec3(const std::vector<U>& tab) : Vector<T, 4>(tab) {}
template<class U>
inline HVec3(const Vector<U, 4>& v) : Vector<T, 4>(v) {}
inline HVec3(const value_type sx,
const value_type sy = 0,
const value_type sz = 0,
const value_type s = 1) {
this->_coord[0] = sx;
this->_coord[1] = sy;
this->_coord[2] = sz;
this->_coord[3] = s;
}
template <class U>
inline HVec3(const Vector<U, 3>& sv) {
this->_coord[0] = (T)sv[0];
this->_coord[1] = (T)sv[1];
this->_coord[2] = (T)sv[2];
this->_coord[3] = (T)1;
}
template <class U>
inline HVec3(const Vector<U, 3>& sv,
const U) {
this->_coord[0] = (T)sv[0];
this->_coord[1] = (T)sv[1];
this->_coord[2] = (T)sv[2];
this->_coord[3] = (T)s;
}
inline value_type sx() const {
return this->_coord[0];
}
inline value_type& sx() {
return this->_coord[0];
}
inline value_type sy() const {
return this->_coord[1];
}
inline value_type& sy() {
return this->_coord[1];
}
inline value_type sz() const {
return this->_coord[2];
}
inline value_type& sz() {
return this->_coord[2];
}
inline value_type s() const {
return this->_coord[3];
}
inline value_type& s() {
return this->_coord[3];
}
// Acces to non-homogeneous coordinates in 3D
inline value_type x() const {
return this->_coord[0] / this->_coord[3];
}
inline value_type y() const {
return this->_coord[1] / this->_coord[3];
}
inline value_type z() const {
return this->_coord[2] / this->_coord[3];
}
};
//
// Vec3 class (3D Vector)
// - T: value type
//
/////////////////////////////////////////////////////////////////////////////
template <class T>
class Vec3 : public Vector<T, 3>
{
public:
typedef typename Vector<T, 3>::value_type value_type;
inline Vec3() : Vector<T, 3>() {}
template <class U>
explicit inline Vec3(const U tab[3]) : Vector<T, 3>(tab) {}
template <class U>
explicit inline Vec3(const std::vector<U>& tab) : Vector<T, 3>(tab) {}
template<class U>
inline Vec3(const Vector<U, 3>& v) : Vector<T, 3>(v) {}
template<class U>
inline Vec3(const HVec3<U>& v) {
this->_coord[0] = (T)v.x();
this->_coord[1] = (T)v.y();
this->_coord[2] = (T)v.z();
}
inline Vec3(const value_type x,
const value_type y = 0,
const value_type z = 0) : Vector<T, 3>() {
this->_coord[0] = x;
this->_coord[1] = y;
this->_coord[2] = z;
}
inline value_type x() const {
return this->_coord[0];
}
inline value_type& x() {
return this->_coord[0];
}
inline value_type y() const {
return this->_coord[1];
}
inline value_type& y() {
return this->_coord[1];
}
inline value_type z() const {
return this->_coord[2];
}
inline value_type& z() {
return this->_coord[2];
}
};
//
// Matrix class
// - T: value type
// - M: rows
// - N: cols
//
/////////////////////////////////////////////////////////////////////////////
// Dirty, but icc under Windows needs this
# define _SIZE (M * N)
template <class T, unsigned M, unsigned N>
class Matrix
{
public:
typedef T value_type;
inline Matrix() {
for (unsigned i = 0; i < _SIZE; i++)
this->_coord[i] = 0;
}
~Matrix() {
internal::is_false<(M == 0)>::ensure();
internal::is_false<(N == 0)>::ensure();
}
template <class U>
explicit inline Matrix(const U tab[M][N]) {
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
this->_coord[i * N + j] = tab[i][j];
}
template <class U>
explicit inline Matrix(const U tab[_SIZE]) {
for (unsigned i = 0; i < _SIZE; i++)
this->_coord[i] = tab[i];
}
template <class U>
explicit inline Matrix(const std::vector<U>& tab) {
for (unsigned i = 0; i < _SIZE; i++)
this->_coord[i] = tab[i];
}
template <class U>
inline Matrix(const Matrix<U, M, N>& m) {
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
this->_coord[i * N + j] = (T)m(i, j);
}
inline value_type operator()(const unsigned i, const unsigned j) const {
return this->_coord[i * N + j];
}
inline value_type& operator()(const unsigned i, const unsigned j) {
return this->_coord[i * N + j];
}
static inline unsigned rows() {
return M;
}
static inline unsigned cols() {
return N;
}
inline Matrix<T, M, N> transpose() const {
Matrix<T, N, M> res;
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
res(j,i) = this->_coord[i * N + j];
return res;
}
inline void getArray(value_type res[M][N]) const {
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
res[i][j] = this->_coord[i * N + j];
}
inline void getArray(value_type res[_SIZE]) const {
for (unsigned i = 0; i < _SIZE; i++)
res[i] = this->_coord[i];
}
inline const value_type* address() const {
return this->_coord;
}
template <class U>
inline Matrix<T, M, N>& operator=(const Matrix<U, M, N>& m) {
if (this != &m)
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
this->_coord[i * N + j] = (T)m(i, j);
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator+=(const Matrix<U, M, N>& m) {
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
this->_coord[i * N + j] += (T)m(i, j);
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator-=(const Matrix<U, M, N>& m) {
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
this->_coord[i * N + j] -= (T)m(i, j);
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator*=(const U lambda) {
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
this->_coord[i * N + j] *= lambda;
return *this;
}
template <class U>
inline Matrix<T, M, N>& operator/=(const U lambda) {
if (lambda)
for (unsigned i = 0; i < M; i++)
for (unsigned j = 0; j < N; j++)
this->_coord[i * N + j] /= lambda;
return *this;
}
protected:
value_type _coord[_SIZE];
};
//
// SquareMatrix class
// - T: value type
// - N: rows & cols
//
/////////////////////////////////////////////////////////////////////////////
// Dirty, but icc under Windows needs this
# define __SIZE (N * N)
template <class T, unsigned N>
class SquareMatrix : public Matrix<T, N, N>
{
public:
typedef T value_type;
inline SquareMatrix() : Matrix<T, N, N>() {}
template <class U>
explicit inline SquareMatrix(const U tab[__SIZE]) : Matrix<T, N, N>(tab) {}
template <class U>
explicit inline SquareMatrix(const std::vector<U>& tab) : Matrix<T, N, N>(tab) {}
template <class U>
inline SquareMatrix(const Matrix<U, N, N>& m) : Matrix<T, N, N>(m) {}
static inline SquareMatrix<T, N> identity() {
SquareMatrix<T, N> res;
for (unsigned i = 0; i < N; i++)
res(i, i) = 1;
return res;
}
};
//
// Vector external functions
//
/////////////////////////////////////////////////////////////////////////////
template <class T, unsigned N>
inline Vector<T, N> operator+(const Vector<T, N>& v1,
const Vector<T, N>& v2) {
Vector<T, N> res(v1);
res += v2;
return res;
}
template <class T, unsigned N>
inline Vector<T, N> operator-(const Vector<T, N>& v1,
const Vector<T, N>& v2) {
Vector<T, N> res(v1);
res -= v2;
return res;
}
template <class T, unsigned N>
inline Vector<T, N> operator*(const Vector<T, N>& v,
const typename Vector<T, N>::value_type r) {
Vector<T, N> res(v);
res *= r;
return res;
}
template <class T, unsigned N>
inline Vector<T, N> operator*(const typename Vector<T, N>::value_type r,
const Vector<T, N>& v) {
Vector<T, N> res(v);
res *= r;
return res;
}
template <class T, unsigned N>
inline Vector<T, N> operator/(const Vector<T, N>& v,
const typename Vector<T, N>::value_type r) {
Vector<T, N> res(v);
if (r)
res /= r;
return res;
}
// dot product
template <class T, unsigned N>
inline typename Vector<T, N>::value_type operator*(const Vector<T, N>& v1,
const Vector<T, N>& v2) {
typename Vector<T, N>::value_type sum = 0;
for (unsigned i = 0; i < N; i++)
sum += v1[i] * v2[i];
return sum;
}
// cross product for 3D Vectors
template <typename T>
inline Vec3<T> operator^(const Vector<T, 3>& v1,
const Vector<T, 3>& v2) {
Vec3<T> res(v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]);
return res;
}
// stream operator
template <class T, unsigned N>
inline std::ostream& operator<<(std::ostream& s,
const Vector<T, N>& v) {
unsigned i;
s << "[";
for (i = 0; i < N - 1; i++)
s << v[i] << ", ";
s << v[i] << "]";
return s;
}
//
// Matrix external functions
//
/////////////////////////////////////////////////////////////////////////////
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N>
operator+(const Matrix<T, M, N>& m1,
const Matrix<T, M, N>& m2) {
Matrix<T, M, N> res(m1);
res += m2;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N>
operator-(const Matrix<T, M, N>& m1,
const Matrix<T, M, N>& m2) {
Matrix<T, M, N> res(m1);
res -= m2;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N>
operator*(const Matrix<T, M, N>& m1,
const typename Matrix<T, M, N>::value_type lambda) {
Matrix<T, M, N> res(m1);
res *= lambda;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N>
operator*(const typename Matrix<T, M, N>::value_type lambda,
const Matrix<T, M, N>& m1) {
Matrix<T, M, N> res(m1);
res *= lambda;
return res;
}
template <class T, unsigned M, unsigned N>
inline Matrix<T, M, N>
operator/(const Matrix<T, M, N>& m1,
const typename Matrix<T, M, N>::value_type lambda) {
Matrix<T, M, N> res(m1);
res /= lambda;
return res;
}
template <class T, unsigned M, unsigned N, unsigned P>
inline Matrix<T, M, P>
operator*(const Matrix<T, M, N>& m1,
const Matrix<T, N, P>& m2) {
unsigned i, j, k;
Matrix<T, M, P> res;
typename Matrix<T, N, P>::value_type scale;
for (j = 0; j < P; j++) {
for (k = 0; k < N; k++) {
scale = m2(k, j);
for (i = 0; i < N; i++)
res(i, j) += m1(i, k) * scale;
}
}
return res;
}
template <class T, unsigned M, unsigned N>
inline Vector<T, M>
operator*(const Matrix<T, M, N>& m,
const Vector<T, N>& v) {
Vector<T, M> res;
typename Matrix<T, M, N>::value_type scale;
for (unsigned j = 0; j < M; j++) {
scale = v[j];
for (unsigned i = 0; i < N; i++)
res[i] += m(i, j) * scale;
}
return res;
}
// stream operator
template <class T, unsigned M, unsigned N>
inline std::ostream& operator<<(std::ostream& s,
const Matrix<T, M, N>& m) {
unsigned i, j;
for (i = 0; i < M; i++) {
s << "[";
for (j = 0; j < N - 1; j++)
s << m(i, j) << ", ";
s << m(i, j) << "]" << std::endl;
}
return s;
}
} // end of namespace vecmat
#endif // VECMAT_H
原因是在windows的头文件里max,min已经被定义成宏了,所以要出问题!
解决方法:
用
#ifdef max
#undef max
#endif
去掉max的定义。
min同上。
问题解决。