Coder Space

最长递增子序列问题的求解

一、最长递增子序列问题的描述

    设n个不同的实数的序列,L的递增子序列是这样一个序列,其中。求最大m值。


二、
第一种算法:转化为LCS问题求解

设序列是对序列按递增排好序的序列。那么,显然XL的最长公共子序列即为L的最长递增子序列。这样就把求最长递增子序列的问题转化为求最长公共子序列问题LCS了。

最长公共子序列问题可用动态规划求解。设分另为LX的子序列。令的最长公共子序列的长度。有如下递推方程:

这可以用时间复杂度为的算法求解。又排序算法复杂度为,可得总复杂度为


三、
第二种算法:动态规划

f(i)表示L中以ai为末元素的最长递增子序列的长度。则有如下的递推方程:

这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj,即j<iaj<ai。如果这样的元素存在,那么对所有aj,都有一个以aj为末元素的最长递增子序列的长度f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1,即以ai为末元素的最长递增子序列,等于以使f(j)最大的那个aj为末元素的递增子序列最末再加上ai;如果这样的元素不存在,那么ai自身构成一个长度为1的以ai为末元素的递增子序列。

    算法复杂度为。这个算法的最坏时间复杂度与第一种算法的阶是相同的。但这个算法没有排序时间,优于第一种算法。


四、
对第二种算法的改进

在第二种算法中,在计算每一个f(i)时,都要找出最大的f(j)(j<i)来,由于f(j)没有顺序,只能顺序查找满足最大的f(j),如果能将让f(j)有序,就可以使用二分查找,这样算法的时间复杂度就可能降到。于是想到用一个数组B来存储“子序列的”最大递增子序列的最末元素,即有:

在计算f(i)时,在数组B中用二分查找法找到满足j<i的最大的,并将B[f[j]+1]置为ai。下面先写出代码,再证明算法的证明性。用Java实现的代码如下:

lis1(float[] L)

{

    int n = L.length;

    float[] B = new float[n+1];//数组B

    B[0]=-10000;//B[0]设为最小,假设任何输入都大于-10000

    B[1]=L[0];//初始时,最大递增子序列长度为1的最末元素为a1

    int Len = 1;//Len为当前最大递增子序列长度,初始化为1

    int p,r,m;//p,r,m分别为二分查找的上界,下界和中点;

    for(int i = 1;i<n;i++)

    {

        p=0;r=Len;

        while(p<=r)//二分查找最末元素小于ai+1的长度最大的最大递增子序列;

        {

           m = (p+r)/2;

           if(B[m]<L[i]) p = m+1;

           else r = m-1;

        }

        B[p] = L[i];//将长度为p的最大递增子序列的当前最末元素置为ai+1;

        if(p>Len) Len++;//更新当前最大递增子序列长度;       

    }

    System.out.println(Len);

}

现在来证明这个算法为什么是正确的。要使算法正确只须证如下命题:


命题1
:每一次循环结束数组B中元素总是按递增顺序排列的。

证明:用数学归纳法,对循环次数i进行归纳。

i=0时,即程序还没进入循环时,命题显然成立。

i<k时命题成立,当i=k时,假设存在,因为第i次循环之前数组B是递增的,因此第i次循环时B[j1]B[j2]必有一个更新,假设B[j1]被更新为元素ai+1,由于ai+1=B[j1]> B[j2],按算法ai+1应更新B[j2]才对,因此产生矛盾;假设B[j2]被更新,设更新前的元素为s,更新后的元素为ai+1,则由算法可知第i次循环前有B[j2]s< ai+1< B[j1],这与归纳假设矛盾。命题得证。


命题2
B[c]中存储的元素是当前所有最长递增子序列长度为c的序列中,最小的最末元素,即设当前循环次数为i,有B[c]={aj| f(k)=f(j)=ck,ji+1ajak}(f(i)为与第二种算法中的f(i)含义相同)

证明:程序中每次用元素ai更新B[c](c=f(i)),设B[c]原来的值为s,则必有ai<s,不然ai就能接在s的后面形成长度为c+1的最长递增子序列,而更新B[c+1]而不是B[c]了。所以B[c]中存放的总是当前长度为c的最长递增子序列中,最小的最末元素。


命题3
:设第i次循环后得到的pp(i+1),那么p(i)为以元素ai为最末元素的最长递增子序列的长度。

证明:只须证p(i)等于第二种算法中的f(i)。显然一定有p(i)<f(i)。假设p(i)<f(i),那么有两种情况,第一种情况是由二分查找法找到的p(i)不是数组B中能让ai接在后面成为新的最长递增子序列的最大的元素,由命题1和二分查找的方法可知,这是不可能的;第二种情况是能让ai接在后面形成长于p(i)的最长递增子序列的元素不在数组B中,由命题2可知,这是不可能的,因为B[c]中存放的是最末元素最小的长度为c的最长递增子序列的最末元素,若ai能接在长度为L(L> p(i))的最长递增子序列后面,就应该能接在B[L]后面,那么就应该有p(i)=L,L> p(i)矛盾。因此一定有p(i)f(i),命题得证。

算法的循环次数为n,每次循环二分查找用时logn,所以算法的时间复杂度为O(nlogn)。这个算法在第二种算法的基础上得到了较好的改进。

posted on 2010-12-28 10:33 David Liu 阅读(499) 评论(0)  编辑 收藏 引用 所属分类: 算法备份


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


My Links

Blog Stats

常用链接

留言簿

文章分类

文章档案

搜索

最新评论