编写一个函数返回数字的二进制位中‘1’的个数。
方法一,递归
int findOneinBin(int n)
{
if(n<2)
return 1;
else return n%2+findOneinBin(n/2);
}
这个方法很容易想到,如果是奇数的话就是他的n/2+1,也就是有一位加上1个1.
方法二,google一下找出来的,没看懂
#define POW(c) (1<<(c))
#define MASK(c) (((unsigned long)-1) / (POW(POW(c)) + 1))
#define ROUND(n, c) (((n) & MASK(c)) + ((n) >> POW(c) & MASK(c)))
int bit_count(unsigned int n)
{
n = ROUND(n, 0);
n = ROUND(n, 1);
n = ROUND(n, 2);
n = ROUND(n, 3);
n = ROUND(n, 4);
return n;
}
一下子看不明白,先把宏展开来:
POW是计算2的幂
MASK很奇怪,一个全1的无符号数字除以2的幂的幂加1?
好在打印出来还能看得懂:
MASK(0) = 55555555 h = 01010101010101010101010101010101 b
MASK(1) = 33333333 h = 00110011001100110011001100110011 b
MASK(2) = 0f0f0f0f h = 00001111000011110000111100001111 b
MASK(3) = 00ff00ff h = 00000000111111110000000011111111 b
MASK(4) = 0000ffff h = 00000000000000001111111111111111 b
这些mask分别把32位数字划分为几个部分。每个部分的前一半和后一半分别是全'0'和全'1'。
MASK(0)分为16个部分,MASK(1)分为8个部分,...
ROUND中对n的处理:(n & MASK) + (n >> POW & MASK)
POW的值刚好是MASK中连续'0'(或者连续'1')的长度。也就是说ROUND把由MASK分开的n的各个部分中的高POW位和低POW位相加。
为了便于说明,取一个简单的部分:MASK(1)的0011
假设n的值为1001,那么ROUND后的结果就是10 + 01 = 11 b,把这个结果赋值给n,这时n的含义由原来的二进制位串变为'1'位的数量。特别的,当ROUND(n, 0)时,把n当作一个32个部分各自'1'位的数量。('0'表示没有'1',而'1'则表示有1个'1')
计算完n = ROUND(n, 0)后,n是一个16个部分各自'1'位数量的'数组',这个'数组'的每个元素只有2个二进制位。最大值为2,足够由2个二进制位来表示。
接下来,计算完n=ROUND(n,1)后,n是一个8个部分各自'1'位数量的'数组',这个'数组'的每个元素只有4个二进制位。最大值为4,足够由4个二进制位来表示。(实际只需要3个二进制位)
...
最后一步,计算n=ROUND(n,4)后,n是一个1个部分各自'1'位数量的'数组',这个'数组'的每个元素有32个二进制位。最大值为32,足够由32个二进制位来表示。(实际只需要6个二进制位)
这个代表32位内'1'位数量的32位二进制数也就是我们要求的结果。