Where there is a dream ,there is hope

  C++博客 :: 首页 :: 联系 :: 聚合  :: 管理
  64 Posts :: 0 Stories :: 8 Comments :: 0 Trackbacks

常用链接

留言簿(1)

我参与的团队

搜索

  •  

最新评论

阅读排行榜

评论排行榜

原文地址:http://zhedahht.blog.163.com/blog/static/254111742007127104759245/
题目:输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。要求不能创建任何新的结点,只调整指针的指向。

  比如将二元查找树
    
                                        10
                                          /    \
                                        6       14
                                      /  \     /  \
                                    4     8  12    16
转换成双向链表

4=6=8=10=12=14=16

  分析:本题是微软的面试题。很多与树相关的题目都是用递归的思路来解决,本题也不例外。下面我们用两种不同的递归思路来分析。

  思路一:当我们到达某一结点准备调整以该结点为根结点的子树时,先调整其左子树将左子树转换成一个排好序的左子链表,再调整其右子树转换右子链表。最近链接左子链表的最右结点(左子树的最大结点)、当前结点和右子链表的最左结点(右子树的最小结点)。从树的根结点开始递归调整所有结点。

  思路二:我们可以中序遍历整棵树。按照这个方式遍历树,比较小的结点先访问。如果我们每访问一个结点,假设之前访问过的结点已经调整成一个排序双向链表,我们再把调整当前结点的指针将其链接到链表的末尾。当所有结点都访问过之后,整棵树也就转换成一个排序双向链表了。

参考代码:

首先我们定义二元查找树结点的数据结构如下:
    struct BSTreeNode // a node in the binary search tree
    {
        int          m_nValue; // value of node
        BSTreeNode  *m_pLeft;  // left child of node
        BSTreeNode  *m_pRight; // right child of node
    };

思路一对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-search-tree into a sorted double-linked list
// Input: pNode - the head of the sub tree
//        asRight - whether pNode is the right child of its parent
// Output: if asRight is true, return the least node in the sub-tree
//         else return the greatest node in the sub-tree
///////////////////////////////////////////////////////////////////////
BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight)
{
      if(!pNode)
            return NULL;

      BSTreeNode *pLeft = NULL;
      BSTreeNode *pRight = NULL;

      // Convert the left sub-tree
      if(pNode->m_pLeft)
            pLeft = ConvertNode(pNode->m_pLeft, false);

      // Connect the greatest node in the left sub-tree to the current node
      if(pLeft)
      {
            pLeft->m_pRight = pNode;
            pNode->m_pLeft = pLeft;
      }

      // Convert the right sub-tree
      if(pNode->m_pRight)
            pRight = ConvertNode(pNode->m_pRight, true);

      // Connect the least node in the right sub-tree to the current node
      if(pRight)
      {
            pNode->m_pRight = pRight;
            pRight->m_pLeft = pNode;
      }

      BSTreeNode *pTemp = pNode;

      // If the current node is the right child of its parent, 
      // return the least node in the tree whose root is the current node
      if(asRight)
      {
            while(pTemp->m_pLeft)
                  pTemp = pTemp->m_pLeft;
      }
      // If the current node is the left child of its parent, 
      // return the greatest node in the tree whose root is the current node
      else
      {
            while(pTemp->m_pRight)
                  pTemp = pTemp->m_pRight;
      }
 
      return pTemp;
}

///////////////////////////////////////////////////////////////////////
// Covert a binary search tree into a sorted double-linked list
// Input: the head of tree
// Output: the head of sorted double-linked list
///////////////////////////////////////////////////////////////////////
BSTreeNode* Convert(BSTreeNode* pHeadOfTree)
{
      // As we want to return the head of the sorted double-linked list,
      // we set the second parameter to be true
      return ConvertNode(pHeadOfTree, true);
}

思路二对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-search-tree into a sorted double-linked list
// Input: pNode -           the head of the sub tree
//        pLastNodeInList - the tail of the double-linked list
///////////////////////////////////////////////////////////////////////
void ConvertNode(BSTreeNode* pNode, BSTreeNode*& pLastNodeInList)
{
      if(pNode == NULL)
            return;

      BSTreeNode *pCurrent = pNode;

      // Convert the left sub-tree
      if (pCurrent->m_pLeft != NULL)
            ConvertNode(pCurrent->m_pLeft, pLastNodeInList);

      // Put the current node into the double-linked list
      pCurrent->m_pLeft = pLastNodeInList; 
      if(pLastNodeInList != NULL)
            pLastNodeInList->m_pRight = pCurrent;

      pLastNodeInList = pCurrent;

      // Convert the right sub-tree
      if (pCurrent->m_pRight != NULL)
            ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}

///////////////////////////////////////////////////////////////////////
// Covert a binary search tree into a sorted double-linked list
// Input: pHeadOfTree - the head of tree
// Output: the head of sorted double-linked list
///////////////////////////////////////////////////////////////////////
BSTreeNode* Convert_Solution1(BSTreeNode* pHeadOfTree)
{
      BSTreeNode *pLastNodeInList = NULL;
      ConvertNode(pHeadOfTree, pLastNodeInList);

      // Get the head of the double-linked list
      BSTreeNode *pHeadOfList = pLastNodeInList;
      while(pHeadOfList && pHeadOfList->m_pLeft)
            pHeadOfList = pHeadOfList->m_pLeft;

      return pHeadOfList;
}

posted on 2010-12-17 08:58 IT菜鸟 阅读(320) 评论(0)  编辑 收藏 引用 所属分类: 算法/数据结构

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理