posts - 18,  comments - 5,  trackbacks - 0
一、题目描述

Description

You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.

Input

The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.

The last test case is followed by a line containing a single 0.

Output

For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.

Sample Input

10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0

Sample Output

1
4
3

二、分析
      一个可以用RMQ解决的问题,关键是如何转化成RMQ问题,注意代码的39行的处理,用ST算法,详细算法:LCA问题(含RMQ的ST算法)
三、代码
  1#include<iostream>
  2#include<cmath>
  3using namespace std;
  4int n, q;
  5int num;
  6int m;
  7int f[100001];
  8int s[100001], t[100001];
  9int mmax[18][100001];
 10int pow2[18];
 11void init_rmq()
 12{
 13    memset(mmax, 0sizeof(mmax));
 14    for(int i=1; i<=m; i++)
 15        mmax[0][i] = f[i];
 16    int t1 = floor(log((double)m)/log(2.0));
 17    for(int i=1; i<=t1; i++)
 18        for(int j=1; j+pow2[i-1]<=n; j++)
 19            mmax[i][j] = max(mmax[i-1][j], mmax[i-1][j+pow2[i-1]]);
 20}

 21int find(int k)
 22{
 23    int i = 1, j = m;
 24    while(i <= j)
 25    {
 26        int mid = (i+j) / 2;
 27        if(s[mid] > k)
 28            j = mid-1;
 29        else if(t[mid] < k)
 30            i = mid+1;
 31        else
 32            return mid;
 33    }

 34    return i;
 35}

 36int rmq(int i, int j)
 37{
 38    int a = find(i), b = find(j);
 39    int aa = a+1, bb = b-1//出现频率只有在一头一尾不与f中相同
 40    int res = 1;
 41    if(bb >= aa)
 42    {
 43        int k = floor(log((double)bb-aa+1/ log(2.0));
 44        res = max(mmax[k][aa], mmax[k][bb - pow2[k] + 1]);
 45    }

 46    if(b > a)
 47    {
 48        res = max(res, t[a] - i + 1);
 49        res = max(res, j - s[b] + 1);
 50    }

 51    else
 52        res = max(res, j - i +1);
 53    return res;
 54}

 55int main()
 56{
 57    while(1)
 58    {
 59        scanf("%d"&n);
 60        if(n == 0)
 61            break;
 62        scanf("%d"&q);
 63        scanf("%d"&num);
 64        m = 0;
 65        int last = num;
 66        int counter = 1;
 67        int head = 1;
 68        memset(f, 0sizeof(f));
 69        memset(s, 0sizeof(s));
 70        memset(t, 0sizeof(t));
 71        for(int i=2; i<=n; i++)
 72        {
 73            scanf("%d"&num);
 74            if(last == num)
 75                counter++;
 76            else
 77            {
 78                f[++m] = counter;
 79                s[m] = head;
 80                t[m] = i-1;
 81                head = i;
 82                last = num;
 83                counter = 1;
 84            }

 85        }

 86        f[++m] = counter;
 87        s[m] = head;
 88        t[m] = n;
 89        n = m;
 90        for(int i=0; i<18; i++)
 91            pow2[i] = 1 << i;
 92        init_rmq();
 93        while(q--)
 94        {
 95            int i, j;
 96            scanf("%d%d"&i, &j);
 97            printf("%d\n", rmq(i, j));
 98        }

 99    }

100}
posted on 2009-07-01 16:24 Icyflame 阅读(2328) 评论(0)  编辑 收藏 引用 所属分类: 解题报告

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理