A Za, A Za, Fighting...

坚信:勤能补拙

问题:
http://poj.org/problem?id=1147

思路:
这题太精妙了...
恐怕是到目前为止,最为精妙的了...
翻了很多网上资料,才想明白,艾,推理能力太差...

关键点:
1. 对于排序后的矩阵,每一行都可以通过第一行旋转得到
2. 假设矩阵中两行都以0开始,则它们左旋后,前后次序不变,所以在矩阵中以0开始的第1行,它的左旋后的序列在最后一列的第一个0的行。对1       开始的行有同样的性质
3. 通过1、2两点即可确定next数组,即第一列与最后一列的对应关系
4. 观察题目给出的Figure 1,可以看出第一列与最后一列之间的巧妙关系: b2可以通过找到第一列b1所对应的最后一列的所在行而得到

代码:
 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #include<string.h>
 4 #define MAX_LEN 3001
 5 int first_col[MAX_LEN], last_col[MAX_LEN];
 6 int N, zeros, ones, next[MAX_LEN];
 7 
 8 int
 9 main(int argc, char **argv)
10 {
11     int i, count;
12     while(scanf("%d"&N) != EOF) {
13         zeros = ones = 0;
14         for(i=1; i<=N; i++) {
15             scanf("%d", last_col+i);
16             if(last_col[i] == 0)
17                 first_col[++zeros] = 0;
18             else
19                 ++ones;
20         }
21         for(i=1; i<=ones; i++)
22             first_col[zeros+i] = 1;
23         ones = zeros+1;
24         zeros = 1;
25         for(i=1; i<=N; i++) {
26             if(last_col[i] == 0)
27                 next[zeros++= i;
28             else
29                 next[ones++= i;
30         }
31 
32         for(count=1, i=1; count<=N; i=next[i], ++count)
33             printf("%d ", first_col[i]);
34         printf("\n");
35     }
36 }
posted @ 2010-10-18 18:25 simplyzhao 阅读(223) | 评论 (0)编辑 收藏
问题:
http://poj.org/problem?id=3508

思路:
挺简单的算数题(注意进位),简化为:
      abc
    +  abc
    ---------
         353
第一次提交居然TLE,汗...
然后把memset(result, 0, sizeof(result))的代码删掉,再适当减少些运算,就AC了,860MS

代码:
 1 /* 860MS */
 2 #include<stdio.h>
 3 #include<stdlib.h>
 4 #include<string.h>
 5 #define MAX_LEN 1000003
 6 char num[MAX_LEN], result[MAX_LEN];
 7 int len;
 8 
 9 void
10 solve()
11 {
12     int i, mark, minus, tmp;
13     minus = mark = 0;
14     for(i=len-1; i>=0; i--) {
15         minus += mark;
16         if(minus <= (num[i]-'0')) {
17             result[i] = num[i] - minus;
18             mark = 0;
19         } else {
20             result[i] = num[i] + 10 - minus;
21             mark = 1;
22         }
23         minus = result[i]-'0';
24     }
25     result[len] = '\0';
26     if(result[0== '0')
27         printf("IMPOSSIBLE\n");
28     else
29         printf("%s\n", result);
30 }
31 
32 int
33 main(int argc, char **argv)
34 {
35     int tests = 0;
36     while(scanf("%s", num)!=EOF && num[0]!='0') {
37         len = strlen(num);
38         printf("%d. "++tests);
39         solve();
40     }
41 }
posted @ 2010-10-17 20:45 simplyzhao 阅读(216) | 评论 (0)编辑 收藏
问题:
http://poj.org/problem?id=1089

思路:
根据interval的begin升序排列,然后对于interval A, B只存在三种情况:
A包含B、A与B相交、A与B分离

代码:
 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #include<string.h>
 4 #define MAX_LEN 50001
 5 struct Interval {
 6     int begin, end;
 7 }itvs[MAX_LEN], target[MAX_LEN];
 8 int N, total;
 9 
10 int
11 compare(const void *arg1, const void *arg2)
12 {
13     struct Interval *= (struct Interval *)arg1;
14     struct Interval *= (struct Interval *)arg2;
15     if(a->begin == b->begin)
16         return a->end - b->end;
17     return a->begin - b->begin;
18 }
19 
20 void
21 init()
22 {
23     int i;
24     for(i=0; i<N; i++)
25         scanf("%d %d"&itvs[i].begin, &itvs[i].end);
26     qsort(itvs, N, sizeof(struct Interval), compare);
27     total = 0;
28 }
29 
30 void
31 solve()
32 {
33     int i;
34     struct Interval cur = itvs[0];
35     for(i=1; i<N; i++) {
36         if(itvs[i].begin > cur.end) {
37             target[total++= cur;
38             cur = itvs[i];
39         } else {
40             if(itvs[i].end > cur.end)
41                 cur.end = itvs[i].end;
42         }
43     }
44     target[total++= cur;
45 }
46 
47 void
48 output()
49 {
50     int i;
51     for(i=0; i<total; i++)
52         printf("%d %d\n", target[i].begin, target[i].end);
53 }
54 
55 int
56 main(int argc, char **argv)
57 {
58     while(scanf("%d"&N) != EOF) {
59         init();
60         solve();
61         output();
62     }
63 }
posted @ 2010-10-17 19:35 simplyzhao 阅读(182) | 评论 (0)编辑 收藏
参考:
http://www.cnblogs.com/coeus/articles/1541722.html

原理:
1. 任何一个合数都可以表示成一个质数和一个数的乘积
2. 假设A是一个合数,且A = x * y,这里x也是一个合数,那么有:
       A = x * y; (假设y质数,x合数)
       x = a * b; (假设a是质数,且a < x)
 ->  A = a * b * y = a * Z (Z = b * y)
即一个合数(x)与一个质数(y)的乘积可以表示成一个更大的合数(Z)与一个更小的质数(a)的乘积
这也是理解代码中 if(i%primes[j] == 0)break;的关键
例如: 如果i = 8; 那么由于i%2 == 0; 因此对于i=8就只需要检查primes[1]即可,因为对于大于primes[1]的质数,像3,有:
        8*3 = 2*4*3 = 12*2
也就是说24(8*3=24)并不需要在8时检查,在12时才检查 

代码:
 1 /*
 2  * Problem:
 3  * given an upper bound like U(integer), print all the primes between 0-U
 4  *
 5  * Points:
 6  * this's a O(n) algorithm, amazing
 7  */
 8 #include<stdio.h>
 9 #include<stdlib.h>
10 #include<string.h>
11 #define MAX_N 250000
12 int N, hash[MAX_N];
13 int pcount, primes[MAX_N];
14 
15 void
16 linear_selection()
17 {
18     int i, j;
19     primes[pcount++= 1;
20     for(i=2; i<=N; i++) {
21         if(!hash[i])
22             primes[pcount++= i;
23         for(j=1; j<pcount && i*primes[j]<=N; j++) {
24             hash[i*primes[j]] = 1;
25             if(i%primes[j] == 0)
26                 break;
27         }
28     }
29 }
30 
31 int
32 main(int argc, char **argv)
33 {
34     int i;
35     while(1) {
36         printf("Enter the upper boundary: ");
37         scanf("%d"&N);
38         if(!N)
39             break;
40         memset(hash, 0sizeof(hash));
41         pcount = 0;
42         linear_selection();
43         for(i=0; i<pcount; i++)
44             printf("%d\n", primes[i]);
45     }
46 }
posted @ 2010-10-17 18:19 simplyzhao 阅读(337) | 评论 (0)编辑 收藏
问题:
http://poj.org/problem?id=3051

思路:
还是教科书式的DFS典型应用,简单题

代码:
 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #include<string.h>
 4 #define MAX_W 83
 5 #define MAX_H 1001
 6 #define is_valid(x,y) (x>=0 && x<H && y>=0 && y<W)
 7 const int dx[] = {-1100};
 8 const int dy[] = {00-11};
 9 char photo[MAX_H][MAX_W];
10 int hash[MAX_H][MAX_W];
11 int W, H;
12 
13 int
14 dfs(int x, int y)
15 {
16     int i, nx, ny, rt = 1;
17     hash[x][y] = 1;
18     for(i=0; i<4; i++) {
19         nx = x+dx[i];
20         ny = y+dy[i];
21         if(is_valid(nx, ny) && photo[nx][ny]=='*' && !hash[nx][ny]) 
22             rt += dfs(nx, ny);
23     }
24     return rt;
25 }
26 
27 int
28 solve()
29 {
30     int i, j, tmp, value = -1;
31     for(i=0; i<H; i++)
32         for(j=0; j<W; j++) {
33             if(photo[i][j]=='*' && !hash[i][j]) {
34                 tmp = dfs(i, j);
35                 value = tmp > value ? tmp : value;
36             }
37         }
38     return value;
39 }
40 
41 int
42 main(int argc, char **argv)
43 {
44     int i;
45     while(scanf("%d %d"&W, &H) != EOF) {
46         for(i=0; i<H; i++)
47             scanf("%s", photo[i]);
48         memset(hash, 0sizeof(hash));
49         printf("%d\n", solve());
50     }
51 }
posted @ 2010-10-17 13:13 simplyzhao 阅读(170) | 评论 (0)编辑 收藏
问题:
http://poj.org/problem?id=1573

思路:
简单题,纯模拟...

代码:
 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #include<string.h>
 4 #define MAX_LEN 12
 5 #define is_valid(x, y) (x>=0 && x<R && y>=0 && y<C)
 6 char map[MAX_LEN][MAX_LEN];
 7 int steps[MAX_LEN][MAX_LEN];
 8 int R, C, entry;
 9 
10 void
11 solve()
12 {
13     char ch;
14     int cx, cy, px, py;
15     cx = px = 0;
16     cy = py = entry-1;
17     while(is_valid(cx, cy) && !steps[cx][cy]) {
18         steps[cx][cy] = steps[px][py] + 1;
19         ch = map[cx][cy];
20         px = cx;
21         py = cy;
22         switch(ch) {
23             case 'N':
24                 cx = px-1;
25                 cy = py;
26                 break;
27             case 'S':
28                 cx = px+1;
29                 cy = py;
30                 break;
31             case 'W':
32                 cx = px;
33                 cy = py-1;
34                 break;
35             case 'E':
36                 cx = px;
37                 cy = py+1;
38                 break;
39         }
40     }
41     if(!is_valid(cx, cy))
42         printf("%d step(s) to exit\n", steps[px][py]);
43     else if(steps[cx][cy])
44         printf("%d step(s) before a loop of %d step(s)\n", steps[cx][cy]-1, steps[px][py]-steps[cx][cy]+1);
45 }
46 
47 int
48 main(int argc, char **argv)
49 {
50     int i;
51     while(scanf("%d %d %d"&R, &C, &entry)!=EOF && R) {
52         for(i=0; i<R; i++)
53             scanf("%s", map[i]);
54         memset(steps, 0sizeof(steps));
55         solve();
56     }
57 }
posted @ 2010-10-17 11:12 simplyzhao 阅读(124) | 评论 (0)编辑 收藏
问题:
http://poj.org/problem?id=1154

思路:
教科书式的DFS,一次AC

代码:
 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #include<string.h>
 4 #define MAX_LEN 21
 5 #define is_valid(x, y) (x>=0&&x<R&&y>=0&&y<C)
 6 const int dx[] = {-1100};
 7 const int dy[] = {00-11};
 8 int R, C;
 9 int rt, hash[26]; /* A-Z */
10 char map[MAX_LEN][MAX_LEN];
11 
12 void
13 dfs(int x, int y, int cur)
14 {
15     int i, mark, next_x, next_y;
16     mark = 0;
17     hash[map[x][y]] = 1;
18     for(i=0; i<4; i++) {
19         next_x = x + dx[i];
20         next_y = y + dy[i];
21         if(is_valid(next_x, next_y) && !hash[map[next_x][next_y]]) {
22             mark = 1;
23             hash[map[next_x][next_y]] = 1;
24             dfs(next_x, next_y, cur+1);
25             hash[map[next_x][next_y]] = 0;
26         }
27     }
28     if(!mark)
29         rt = cur>rt ? cur : rt;
30 }
31 
32 int
33 main(int argc, char **argv)
34 {
35     int i;
36     while(scanf("%d %d"&R, &C) != EOF) {
37         for(i=0; i<R; i++)
38             scanf("%s", map[i]);
39         rt = -1;
40         memset(hash, 0sizeof(hash));
41         dfs(001);
42         printf("%d\n", rt);
43     }
44 }
posted @ 2010-10-17 01:19 simplyzhao 阅读(196) | 评论 (0)编辑 收藏
问题:
http://ace.delos.com/usacoprob2?a=CTINrbaHwEW&S=packrec

思路:
这题不会,考虑的时候以为任意两个矩阵至少存在相同的边才可以合并...结果完全错误

参考:
http://starforever.blog.hexun.com/2097115_d.html
http://greenmoon55.com/usaco-packing-rectangles/

另外,这题学会了在C里面使用bool类型,原来不知道呢(*^__^*) 嘻嘻……
stdbool.h头文件

代码:
  1 /*
  2 ID: simplyz2
  3 LANG: C
  4 TASK: packrec
  5 */
  6 #include<stdio.h>
  7 #include<stdbool.h>
  8 #include<stdlib.h>
  9 #include<string.h>
 10 #define MAX_NUM 5
 11 #define INF 0x7FFFFFFF
 12 #define Max(a, b) ((a)>(b) ? (a) : (b))
 13 struct Rec {
 14     int h, w;
 15 } rectangle[MAX_NUM], rect[MAX_NUM], ans[MAX_NUM];
 16 bool used[MAX_NUM];
 17 int w, h, total, area;
 18 
 19 void
 20 exchange(struct Rec *r)
 21 {
 22     int temp = r->h;
 23     r->= r->w;
 24     r->= temp;
 25 }
 26 
 27 void
 28 judge()
 29 {
 30     int i, j, temp;
 31     if(w > h) {
 32         temp = w;
 33         w = h;
 34         h = temp;
 35     }
 36     if(w*<= area) {
 37         if(w*== area) {
 38             for(i=1; i<total; i++)
 39                 if(ans[i].w == w)
 40                     return;
 41             for(i=1; i<total; i++)
 42                 if(ans[i].w > w) {
 43                     for(j=total; j>i; j--)
 44                         ans[j] = ans[j-1];
 45                     ans[i].w = w;
 46                     ans[i].h = h;
 47                     ++total;
 48                     return;
 49                 }
 50             ans[total].w = w;
 51             ans[total++].h = h;
 52         } else {
 53             area = w*h;
 54             total = 1;
 55             ans[total].w = w;
 56             ans[total].h = h;
 57         }
 58     }
 59 }
 60 
 61 void
 62 work()
 63 {   
 64     //Case 1
 65     w=rect[1].w+rect[2].w+rect[3].w+rect[4].w;
 66     h=Max(rect[1].h,rect[2].h);
 67     h=Max(h,rect[3].h);
 68     h=Max(h,rect[4].h);
 69     judge();
 70  
 71     //Case 2
 72     w=Max(rect[1].w+rect[2].w+rect[3].w,rect[4].w);
 73     h=Max(rect[1].h,rect[2].h);
 74     h=Max(h,rect[3].h);
 75     h+=rect[4].h;
 76     judge();
 77  
 78     //Case 3
 79     w=Max(rect[1].w+rect[2].w,rect[3].w)+rect[4].w;
 80     h=Max(Max(rect[1].h,rect[2].h)+rect[3].h,rect[4].h);
 81     judge();
 82  
 83     //Case 4
 84     w=rect[1].w+Max(rect[2].w,rect[3].w)+rect[4].w;
 85     h=Max(rect[1].h,rect[4].h);
 86     h=Max(h,rect[2].h+rect[3].h);
 87     judge();
 88  
 89     //Case 6
 90     if (rect[3].h>=rect[2].h+rect[4].h)
 91     {
 92         w=Max(rect[3].w+rect[2].w,rect[3].w+rect[4].w);
 93         w=Max(w,rect[1].w);
 94         h=rect[1].h+rect[3].h;
 95         judge();
 96         return;
 97     }
 98     if (rect[3].h>rect[4].h)
 99     {
100         w=Max(rect[1].w+rect[2].w,rect[2].w+rect[3].w);
101         w=Max(w,rect[4].w+rect[3].w); 
102         h=Max(rect[1].h+rect[3].h,rect[2].h+rect[4].h);
103         judge();
104         return;
105     }
106     if (rect[3].h==rect[4].h)
107     {
108         w=Max(rect[1].w+rect[2].w,rect[3].w+rect[4].w);
109         h=Max(rect[1].h,rect[2].h)+rect[3].h;
110         judge();
111         return;
112     }
113     if (rect[3].h<rect[4].h && rect[4].h<rect[3].h+rect[1].h)
114     {
115         w=Max(rect[1].w+rect[2].w,rect[1].w+rect[4].w);
116         w=Max(w,rect[3].w+rect[4].w);
117         h=Max(rect[1].h+rect[3].h,rect[2].h+rect[4].h);
118         judge();
119         return;
120     }
121     w=Max(rect[2].w,rect[1].w+rect[4].w);
122     w=Max(w,rect[3].w+rect[4].w);
123     h=rect[4].h+rect[2].h;
124     judge(); 
125 }
126 
127 void
128 rotate(int depth)
129 {
130     if(depth == MAX_NUM) {
131         work();
132         return;
133     }
134     rotate(depth+1);
135     exchange(rect+depth);
136     rotate(depth+1);
137 }
138 
139 void
140 dfs(int depth)
141 {
142     int i;
143     if(depth == MAX_NUM) {
144         rotate(1);
145         return;
146     }
147     for(i=1; i<MAX_NUM; i++) {
148         if(!used[i]) {
149             used[i] = true;
150             rect[depth] = rectangle[i];
151             dfs(depth+1);
152             used[i] = false;
153         }
154     }
155 }
156 
157 int
158 main(int argc, char **argv)
159 {
160     int i;
161     freopen("packrec.in""r", stdin);
162     freopen("packrec.out""w", stdout);
163     for(i=1; i<MAX_NUM; i++)
164         scanf("%d %d"&rectangle[i].w, &rectangle[i].h);
165     total = 1;
166     area = INF;
167     memset(used, 0sizeof(used));
168     dfs(1);
169     printf("%d\n", area);
170     for(i=1; i<total; i++)
171         printf("%d %d\n", ans[i].w, ans[i].h);
172     return 0;
173 }
posted @ 2010-10-13 19:45 simplyzhao 阅读(376) | 评论 (0)编辑 收藏
出处:
http://ace.delos.com/usacotext2?a=4odBE1tA7sS&S=rec

Sample Problem: n Queens [Traditional]

Place n queens on an n x n chess board so that no queen is attacked by another queen.

Depth First Search (DFS)

The most obvious solution to code is to add queens recursively to the board one by one, trying all possible queen placements. It is easy to exploit the fact that there must be exactly one queen in each column: at each step in the recursion, just choose where in the current column to put the queen. 

 1 search(col)
 2     if filled all columns
 3         print solution and exit 

 4   for each row
 5       if board(row, col) is not attacked
 6            place queen at (row, col)
 7            search(col+1)
 8            remove queen at (row, col)

Calling search(0) begins the search. This runs quickly, since there are relatively few choices at each step: once a few queens are on the board, the number of non-attacked squares goes down dramatically.

This is an example of depth first search, because the algorithm iterates down to the bottom of the search tree as quickly as possible: once k queens are placed on the board, boards with even more queens are examined before examining other possible boards with only k queens. This is okay but sometimes it is desirable to find the simplest solutions before trying more complex ones.

Depth first search checks each node in a search tree for some property. The search tree might look like this: 

The algorithm searches the tree by going down as far as possible and then backtracking when necessary, making a sort of outline of the tree as the nodes are visited. Pictorially, the tree is traversed in the following manner: 

Complexity

Suppose there are d decisions that must be made. (In this case d=n, the number of columns we must fill.) Suppose further that there are C choices for each decision. (In this case c=n also, since any of the rows could potentially be chosen.) Then the entire search will take time proportional to cd, i.e., an exponential amount of time. This scheme requires little space, though: since it only keeps track of as many decisions as there are to make, it requires only O(d) space.

Sample Problem: Knight Cover [Traditional]

Place as few knights as possible on an n x n chess board so that every square is attacked. A knight is not considered to attack the square on which it sits.

Breadth First Search (BFS)

In this case, it is desirable to try all the solutions with only k knights before moving on to those with k+1 knights. This is called breadth first search. The usual way to implement breadth first search is to use a queue of states: 

 1 process(state)
 2     for each possible next state from this one
 3         enqueue next state 

 4 search()
 5     enqueue initial state
 6     while !empty(queue)
 7         state = get state from queue
 8         process(state)

This is called breadth first search because it searches an entire row (the breadth) of the search tree before moving on to the next row. For the search tree used previously, breadth first search visits the nodes in this order: 

It first visits the top node, then all the nodes at level 1, then all at level 2, and so on.

Complexity

Whereas depth first search required space proportional to the number of decisions (there were n columns to fill in the n queens problem, so it took O(n) space), breadth first search requires space exponential in the number of choices.

If there are c choices at each decision and k decisions have been made, then there are ck possible boards that will be in the queue for the next round. This difference is quite significant given the space restrictions of some programming environments.

[Some details on why ck: Consider the nodes in the recursion tree. The zeroeth level has 1 nodes. The first level has c nodes. The second level has c2 nodes, etc. Thus, the total number of nodes on the k-th level is ck.]

Depth First with Iterative Deepening (ID)

An alternative to breadth first search is iterative deepening. Instead of a single breadth first search, run D depth first searches in succession, each search allowed to go one row deeper than the previous one. That is, the first search is allowed only to explore to row 1, the second to row 2, and so on. This ``simulates'' a breadth first search at a cost in time but a savings in space. 

 1 truncated_dfsearch(hnextpos, depth)
 2     if board is covered
 3         print solution and exit 

 4     if depth == 0
 5         return 

 6     for i from nextpos to n*n
 7         put knight at i
 8         truncated_dfsearch(i+1, depth-1)
 9         remove knight at i 

10 dfid_search
11     for depth = 0 to max_depth
12        truncated_dfsearch(0, depth)

Complexity

The space complexity of iterative deepening is just the space complexity of depth first search: O(n). The time complexity, on the other hand, is more complex. Each truncated depth first search stopped at depth k takes ck time. Then if d is the maximum number of decisions, depth first iterative deepening takes c0 + c1 + c2 + ... + cd time.

If c = 2, then this sum is cd+1 - 1, about twice the time that breadth first search would have taken. When c is more than two (i.e., when there are many choices for each decision), the sum is even less: iterative deepening cannot take more than twice the time that breadth first search would have taken, assuming there are always at least two choices for each decision.

Which to Use?

Once you've identified a problem as a search problem, it's important to choose the right type of search. Here are some things to think about.

In a Nutshell
SearchTimeSpaceWhen to use
DFSO(ck)O(k)Must search tree anyway, know the level the answers are on, or you aren't looking for the shallowest number.
BFSO(cd)O(cd)Know answers are very near top of tree, or want shallowest answer.
DFS+IDO(cd)O(d)Want to do BFS, don't have enough space, and can spare the time.
d is the depth of the answer 
k is the depth searched 
d <= k

Remember the ordering properties of each search. If the program needs to produce a list sorted shortest solution first (in terms of distance from the root node), use breadth first search or iterative deepening. For other orders, depth first search is the right strategy.

If there isn't enough time to search the entire tree, use the algorithm that is more likely to find the answer. If the answer is expected to be in one of the rows of nodes closest to the root, use breadth first search or iterative deepening. Conversely, if the answer is expected to be in the leaves, use the simpler depth first search.

Be sure to keep space constraints in mind. If memory is insufficient to maintain the queue for breadth first search but time is available, use iterative deepening.

Sample Problems

Superprime Rib [USACO 1994 Final Round, adapted]

A number is called superprime if it is prime and every number obtained by chopping some number of digits from the right side of the decimal expansion is prime. For example, 233 is a superprime, because 233, 23, and 2 are all prime. Print a list of all the superprime numbers of length n, for n <= 9. The number 1 is not a prime.

For this problem, use depth first search, since all the answers are going to be at the nth level (the bottom level) of the search.

Betsy's Tour [USACO 1995 Qualifying Round]

A square township has been partitioned into 2 square plots. The Farm is located in the upper left plot and the Market is located in the lower left plot. Betsy takes a tour of the township going from Farm to Market by walking through every plot exactly once. Write a program that will count how many unique tours Betsy can take in going from Farm to Market for any value of n <= 6.

Since the number of solutions is required, the entire tree must be searched, even if one solution is found quickly. So it doesn't matter from a time perspective whether DFS or BFS is used. Since DFS takes less space, it is the search of choice for this problem.

Udder Travel [USACO 1995 Final Round; Piele]

The Udder Travel cow transport company is based at farm A and owns one cow truck which it uses to pick up and deliver cows between seven farms A, B, C, D, E, F, and G. The (commutative) distances between farms are given by an array. Every morning, Udder Travel has to decide, given a set of cow moving orders, the order in which to pick up and deliver cows to minimize the total distance traveled. Here are the rules:

  • The truck always starts from the headquarters at farm A and must return there when the day's deliveries are done.
  • The truck can only carry one cow at a time.
  • The orders are given as pairs of letters denoting where a cow is to be picked up followed by where the cow is to be delivered.

Your job is to write a program that, given any set of orders, determines the shortest route that takes care of all the deliveries, while starting and ending at farm A.

Since all possibilities must be tried in order to ensure the best one is found, the entire tree must be searched, which takes the same amount of time whether using DFS or BFS. Since DFS uses much less space and is conceptually easier to implement, use that.

Desert Crossing [1992 IOI, adapted]

A group of desert nomads is working together to try to get one of their group across the desert. Each nomad can carry a certain number of quarts of water, and each nomad drinks a certain amount of water per day, but the nomads can carry differing amounts of water, and require different amounts of water. Given the carrying capacity and drinking requirements of each nomad, find the minimum number of nomads required to get at least one nomad across the desert.

All the nomads must survive, so every nomad that starts out must either turn back at some point, carrying enough water to get back to the start or must reach the other side of the desert. However, if a nomad has surplus water when it is time to turn back, the water can be given to their friends, if their friends can carry it.

Analysis: This problem actually is two recursive problems: one recursing on the set of nomads to use, the other on when the nomads turn back. Depth-first search with iterative deepening works well here to determine the nomads required, trying first if any one can make it across by themselves, then seeing if two work together to get across, etc.

Addition Chains

An addition chain is a sequence of integers such that the first number is 1, and every subsequent number is the sum of some two (not necessarily unique) numbers that appear in the list before it. For example, 1 2 3 5 is such a chain, as 2 is 1+1, 3 is 2+1, and 5 is 2+3. Find the minimum length chain that ends with a given number.

Analysis: Depth-first search with iterative deepening works well here, as DFS has a tendency to first try 1 2 3 4 5 ... n, which is really bad and the queue grows too large very quickly for BFS.


posted @ 2010-10-10 10:58 simplyzhao 阅读(249) | 评论 (0)编辑 收藏
问题:
http://ace.delos.com/usacoprob2?a=NAqufR1Vt6H&S=calfflac

思路:
不是很难,枚举,但需要注意很多细节
另外,要注意存在奇数与偶数长度的回文这两种情况
完全参考ANALYSIS,学习到很多纯指针操作字符串的写法

代码:
 1 /*
 2 ID: simplyz2
 3 LANG: C
 4 TASK: calfflac
 5 */
 6 #include<stdio.h>
 7 #include<stdlib.h>
 8 #include<string.h>
 9 #include<assert.h> /* void assert(int exp); */
10 #include<ctype.h>
11 #define MAX_LEN 21000
12 char text[MAX_LEN], fulltext[MAX_LEN];
13 char *pal;
14 int pallen;
15 
16 void
17 solve()
18 {
19     int len;
20     char *fwd, *bkwd, *end, *p;
21     pallen = 0;
22     end = text + strlen(text);
23     for(p=text; *p; p++) {
24         for(fwd=p, bkwd=p; fwd<end && bkwd>=text && *fwd==*bkwd; fwd++, bkwd--); /* odd: middle, such as 'aba' */
25         bkwd++;
26         len = fwd - bkwd;
27         if(len > pallen) {
28             pallen = len;
29             pal = bkwd;
30         }
31         for(fwd=p+1, bkwd=p; fwd<end && bkwd>=text && *fwd==*bkwd; fwd++, bkwd--); /* even: left middle, such as 'abba' */
32         bkwd++;
33         len = fwd - bkwd;
34         if(len > pallen) {
35             pallen = len;
36             pal = bkwd;
37         }
38     }
39 }
40 
41 void
42 output()
43 {
44     int i, n;
45     char *p; 
46     n = pal - text;
47     printf("%d\n", pallen);
48     for(i=0, p=fulltext; *p; p++) {
49         if(isalpha(*p))
50             ++i;
51         if(i > n)
52             break;
53     }
54     for(i=0; i<pallen && *p; p++) {
55         fputc(*p, stdout);
56         if(isalpha(*p))
57             ++i;
58     }
59     printf("\n");
60 }
61 
62 int
63 main(int argc, char **argv)
64 {
65     char *p, *q;
66     int c;
67     freopen("calfflac.in""r", stdin);
68     freopen("calfflac.out""w", stdout);
69     p = fulltext;
70     q = text;
71     while((c=getc(stdin)) != EOF) { /* operation on each char */
72         if(isalpha(c))
73             *q++ = tolower(c); 
74         /* '++''s priority is higher than '*', and '++' first return 'p', than move the pointer forward */
75         *p++ = c;
76     }
77     *= '\0';
78     *= '\0';
79     solve();
80     output();
81     return 0;
82 }
posted @ 2010-10-09 17:05 simplyzhao 阅读(182) | 评论 (0)编辑 收藏
仅列出标题
共21页: First 6 7 8 9 10 11 12 13 14 Last 

导航

<2024年12月>
24252627282930
1234567
891011121314
15161718192021
22232425262728
2930311234

统计

常用链接

留言簿(1)

随笔分类

随笔档案

搜索

最新评论

阅读排行榜

评论排行榜