ACM___________________________

______________白白の屋
posts - 182, comments - 102, trackbacks - 0, articles - 0
MiYu原创, 转帖请注明 : 转载自 ______________白白の屋

题目地址:
         http://acm.hdu.edu.cn/showproblem.php?pid=2199
题目描述:
         
Can you solve this equation?

Time Limit: 
2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 
322    Accepted Submission(s): 148


Problem Description
Now,given the equation 
8*x^4 + 7*x^3 + 2*x^2 + 3*+ 6 == Y,can you find its solution between 0 and 100;
Now please 
try your lucky.
 

Input
The first line of the input contains an integer T(
1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
 

Output
For each test 
case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
 

Sample Input
2
100
-4
 

Sample Output
1.6152
No solution
!

题目分析:
很明显,这是一个2分搜索的题目, 但是注意下题目的数据!! 1e10 的实数!! 而且精度是要求在 0.0001 . 所以就算是2分数据量依旧比较大,如果用
通常的递归方法吗很遗憾 , RE了.............  没办法, 只能循环了.
下面的是递归 RE 的代码 :
#include <iostream>
#include <cmath>
using namespace std;
#define POW(x) ( (x) * (x) )
#define POW3(x) ( POW(x) * (x) )
#define POW4(x) ( POW(x) * POW(x) )
double y = 0;
bool douEql ( double a,double b )
{
if ( fabs( a - b ) <= 1e-6  )
return  true;
return false;
}
double cal ( double n )
{
return 8.0 * POW4(n) + 7 * POW3(n) + 2 * POW(n) + 3 * n + 6 ;
}
double biSearch ( double l, double r )
{
if ( douEql ( l,r ) )
{
if ( douEql ( y, cal ( l ) ) )
return l;
return -1;
}
double mid = ( l + r ) / 2.0;
if ( douEql ( y, cal ( mid ) ) )
return mid;
else if ( cal ( mid ) > y )
return biSearch ( l,mid - 0.0001 );
else
return biSearch ( mid + 0.0001, r );
}
int main ()
{
int T;
scanf ( "%d",&T );
while ( T -- )
{
scanf ( "%lf",&y );
if ( cal(0) >= y && cal(100) <= y )
{
printf ( "No solution!\n" );
continue;
}
double res = biSearch ( 0.0, 100.0 );
if ( res == -1 )
printf ( "No solution!\n" );
else
printf ( "%.4lf\n",res );
}
return 0;
}

AC代码如下:
MiYu原创, 转帖请注明 : 转载自 ______________白白の屋

#include 
<iostream>
#include 
<cmath>
using namespace std;
#define POW(x) ( (x) * (x) )
#define POW3(x) ( POW(x) * (x) )
#define POW4(x) ( POW(x) * POW(x) )
double y = 0;
double cal ( double n )
{
       
return 8.0 * POW4(n) + 7 * POW3(n) + 2 * POW(n) + 3 * n + 6 ;
}
int main ()
{
    
int T;
    scanf ( 
"%d",&T );
    
while ( T -- )
    {
          scanf ( 
"%lf",&y );
          
if ( cal(0> y || cal(100< y )
          {
               printf ( 
"No solution!\n" );
               
continue;
          }
          
double l = 0.0, r = 100.0,res = 0.0;
          
while ( r - l > 1e-6 )
          {
                
double mid = ( l + r ) / 2.0;
                res 
= cal ( mid );
                
if ( res > y )
                     r 
= mid - 1e-6;    
                
else 
                     l 
= mid + 1e-6;
          }
          printf ( 
"%.4lf\n",( l + r ) / 2.0 ); 
    }
    
return 0
}

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理