The goal of any computer organization course, in my mind, is to give you the understanding of how a computer works.
In particular, I want to show you how to build a computer. This isn't a real computer, but it's not exactly fake either. A real computer requires many features to make it run fast, to interact with the keyboard, the mouse, the Internet, and so forth. All of those peripherals are very important when it comes to using a computer, and yet, they are really only secondary when it comes to understanding how a computer fundamentally works.
The computer we'll build is not one you can buy from a store, or from someplace online. You'll never play a game, or watch a video, or write and compile a program on this computer.
The purpose is to "build" a very rudimentary computer, and to make you believe that this computer could possibly work. Many details are left out. For example, we don't worry about very low level details. Silicon and semiconductor physics are not the point of this exercise.
We'll work at a more abstract level, concerning ourselves with registers, wires, combinational and sequential logic devices. While these may not make any sense to you know, they should become clearer later on.
We're not going to worry about how to make a computer run fast either. So our system doesn't include any caches, or pipelines. Nevertheless, by understanding the computer we build, you should have enough understanding to see how a more efficient computer can be built.
Our goal is to build a CPU that can run a small subset MIPS32 ISA. Why MIPS32? Of all ISAs, MIPS32 is very simple. Simple doesn't mean bad. In fact, simple, in this case, means it can be efficient. It's also great for instruction purposes because it's easier to understand than IA32 (the instruction set for x86).
We pick one ISA because this makes life simple. I could talk about half a dozen different ISAs, but that's like discussing half a dozen different programming languages. In the end, you know 6 programming languages badly, instead of one programming language well. By concetrating on one example, you learn how it works, and then you have something to compare it to when you learn other ISAs.