1.最流行的方法:主成分分析(Principal Component Analisis,PCA)和线性判别分析(Linear Discriminant Analysis,LDA)
相关论文:PCA ,Face Recognition using Eigenfaces LDA,Based on an optimized LDA algorithm for face recognition
2.流形学习算法: 等距离映射(Isometric mapping,Isomap),局部线性嵌入(locally linear embedding, LLE),拉普拉斯特征映射(laplacian eigenmap)和局部保持投影(Locality Preserving Projections,LPP)等
相关论文: Isomap, global geometric framework for nonlinear dimensionality reduction LLE, Nonlinear dimentionality reduction by locally linear embedding. laplacian eigenmap, Laplacian eigenmaps for dimensionality reduction and data representation . LPP, Learning a locality discriminanting projection for classification.