The Fourth Dimension Space

枯叶北风寒,忽然年以残,念往昔,语默心酸。二十光阴无一物,韶光贱,寐难安; 不畏形影单,道途阻且慢,哪曲折,如渡飞湍。斩浪劈波酬壮志,同把酒,共言欢! -如梦令

#

计算几何模板

     摘要: 今天OJ上挂了日本的2006分区赛,其中一个几何题求多边形的核的问题,自己弄了别人的模板过来,贴过了.现在自己的计算几何还是太匮乏了,不够系统。不过好在模板上问题归类的不错,哈哈.占为己有,以后就贴它了.2007年8月25日整理的新的:整理了一下位置,使之跟清晰加了圆的一些函数,不过没有验证。 #include <iostream>#include <...  阅读全文

posted @ 2009-08-04 14:44 abilitytao 阅读(2047) | 评论 (0)编辑 收藏

深度剖析KMP,让你认识真正的Next

     摘要: KMP算法,想必大家都不陌生,它是求串匹配问题的一个经典算法(当然如果你要理解成放电影的KMP,请退出本页面直接登录各大电影网站,谢谢),我想很多人对它的理解仅限于此,知道KMP能经过预处理然后实现O(N*M)的效率,比brute force(暴力算法)更优秀等等,其实KMP算法中的Next函数,功能十分强大,其能力绝对不仅仅限于模式串匹配,它并不是KMP的附属品,其实它还有更多不为人知的神秘功能...  阅读全文

posted @ 2009-08-01 10:26 abilitytao 阅读(3058) | 评论 (3)编辑 收藏

KMP算法详解(转自 matrix67)

如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段。

    我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?”
    解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。
    之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。
    个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。

    假如,A="abababaababacb",B="ababacb",我们来看看KMP是怎么工作的。我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。当A[i+1]=B[j+1]时,i和j各加一;什么时候j=m了,我们就说B是A的子串(B串已经整完了),并且可以根据这时的i值算出匹配的位置。当A[i+1]<>B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配(从而使得i和j能继续增加)。我们看一看当 i=j=5时的情况。

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B = a b a b a c b
    j = 1 2 3 4 5 6 7


    此时,A[6]<>B[6]。这表明,此时j不能等于5了,我们要把j改成比它小的值j'。j'可能是多少呢?仔细想一下,我们发现,j'必须要使得B[1..j]中的头j'个字母和末j'个字母完全相等(这样j变成了j'后才能继续保持i和j的性质)。这个j'当然要越大越好。在这里,B [1..5]="ababa",头3个字母和末3个字母都是"aba"。而当新的j为3时,A[6]恰好和B[4]相等。于是,i变成了6,而j则变成了 4:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7


    从上面的这个例子,我们可以看到,新的j可以取多少与i无关,只与B串有关。我们完全可以预处理出这样一个数组P[j],表示当匹配到B数组的第j个字母而第j+1个字母不能匹配了时,新的j最大是多少。P[j]应该是所有满足B[1..P[j]]=B[j-P[j]+1..j]的最大值。
    再后来,A[7]=B[5],i和j又各增加1。这时,又出现了A[i+1]<>B[j+1]的情况:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =     a b a b a c b
    j =     1 2 3 4 5 6 7


    由于P[5]=3,因此新的j=3:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =         a b a b a c b
    j =         1 2 3 4 5 6 7


    这时,新的j=3仍然不能满足A[i+1]=B[j+1],此时我们再次减小j值,将j再次更新为P[3]:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =             a b a b a c b
    j =             1 2 3 4 5 6 7


    现在,i还是7,j已经变成1了。而此时A[8]居然仍然不等于B[j+1]。这样,j必须减小到P[1],即0:

    i = 1 2 3 4 5 6 7 8 9 ……
    A = a b a b a b a a b a b …
    B =               a b a b a c b
    j =             0 1 2 3 4 5 6 7


    终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
    这个过程的代码很短(真的很短),我们在这里给出:

j:=0;
for i:=1 to n do
begin
   while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
   if B[j+1]=A[i] then j:=j+1;
   if j=m then
   begin
      writeln('Pattern occurs with shift ',i-m);
      j:=P[j];
   end;
end;


    最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
    这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。

    现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
    为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
    预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],...,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:

        1 2 3 4 5 6 7
    B = a b a b a c b
    P = 0 0 1 2 3 ?


    P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
    怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:

P[1]:=0;
j:=0;
for i:=2 to m do
begin
   while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
   if B[j+1]=B[i] then j:=j+1;
   P[i]:=j;
end;


    最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。

    串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。

    昨天发现一个特别晕的事,知道怎么去掉BitComet的广告吗?把界面语言设成英文就行了。
    还有,金山词霸和Dr.eye都可以去自杀了,Babylon素王道。

来自:http://www.matrix67.com/blog/archives/115

posted @ 2009-07-31 12:25 abilitytao 阅读(274) | 评论 (0)编辑 收藏

动态规划法求解RMQ(range minimum/maximum query)问题 (转)

     摘要: 题目描述: RMQ(Range Minimum/Maximum Query)问题:   RMQ问题是求给定区间中的最值问题。当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的算法效率不够。可以用线段树将算法优化到O(logn)(在线段树中保存线段的最值)。不过,Sparse_Table算法才是最好的:它可以在O(nlogn)的预处理以后实现...  阅读全文

posted @ 2009-07-26 17:49 abilitytao 阅读(264) | 评论 (0)编辑 收藏

7.25航电练习赛 F题 trucking 解题报告(二分+Dij)

     摘要: 这道题实际上就是最短路,只不过增加了高度这个限制条件,由于时间限制是10s,我们不妨二分枚举出所有高度在1-limit之间的情况(时间复杂度是n^2log n,可以接受)取最大的即可。PS:本人觉得此题最BT之处在于输出格式,Fuck!最后一个Case居然不要空行,害我PE十几次。 #include<iostream>#include<cmath>#include<...  阅读全文

posted @ 2009-07-26 04:21 abilitytao 阅读(1076) | 评论 (0)编辑 收藏

背包九讲(转)

P01: 01背包问题
题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。

优化空间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v -c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i -1][v-c[i]]的值。伪代码如下:

for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

总结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

P02: 完全背包问题
题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<= v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c [i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。

更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。 但我们有更优的O(VN)的算法。 * O(VN)的算法 这个算法使用一维数组,先看伪代码: <pre class"example"> for i=1..N for v=0..V f[v]=max{f[v],f[v-c[i]]+w[i]};



你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。

这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。

总结
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。

P03: 多重背包问题
题目
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本算法
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取 n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[i][v]=max{f[i-1][v-k*c[i]]+ k*w[i]|0<=k<=n[i]}。复杂度是O(V*∑n[i])。

转化为01背包问题
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为∑n[i]的01背包问题,直接求解,复杂度仍然是O(V*∑n[i])。

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。

分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。

这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑log n[i])的01背包问题,是很大的改进。

O(VN)的算法
多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。

小结
这里我们看到了将一个算法的复杂度由O(V*∑n[i])改进到O(V*∑log n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。



P04: 混合三种背包问题
问题
如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?

01背包与完全背包的混合
考虑到在P01和P02中最后给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:

for i=1..N
if 第i件物品是01背包
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
else if 第i件物品是完全背包
for v=0..V
f[v]=max{f[v],f[v-c[i]]+w[i]};

再加上多重背包
如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log n[i])个01背包的物品的方法也已经很优了。

小结
有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。
P05: 二维费用的背包问题
问题
二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。

算法
费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:f [i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用顺序的循环,当物品有如完全背包问题时采用逆序的循环。当物品有如多重背包问题时拆分物品。

物品总个数的限制
有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。

另外,如果要求“恰取M件物品”,则在f[0..V][M]范围内寻找答案。

小结
事实上,当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。

P06: 分组的背包问题
问题
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

算法
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于第k组}。

使用一维数组的伪代码如下:

for 所有的组k
for 所有的i属于组k
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]}


我觉得这个地方写得有误 应该是:
for 所有的组k
for v=V..0
for 所有的i属于组k
f[v]=max{f[v],f[v-c[i]]+w[i]}       by abilitytao  例题见浙大3264


另外,显然可以对每组中的物品应用P02中“一个简单有效的优化”。

小结
分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如P07),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。

P07: 有依赖的背包问题
简化的问题
这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同时依赖多件物品。

算法
这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。

按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件……无法用状态转移方程来表示如此多的策略。(事实上,设有n个附件,则策略有2^n+1个,为指数级。)

考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于P06中的一个物品组,每个选择了主件又选择了若干个附件的策略对应于这个物品组中的一个物品,其费用和价值都是这个策略中的物品的值的和。但仅仅是这一步转化并不能给出一个好的算法,因为物品组中的物品还是像原问题的策略一样多。

再考虑P06中的一句话: 可以对每组中的物品应用P02中“一个简单有效的优化”。这提示我们,对于一个物品组中的物品,所有费用相同的物品只留一个价值最大的,不影响结果。所以,我们可以对主件i的“附件集合”先进行一次01背包,得到费用依次为0..V-c[i]所有这些值时相应的最大价值f'[0..V-c[i]]。那么这个主件及它的附件集合相当于V-c[i]+1个物品的物品组,其中费用为c[i]+k的物品的价值为f'[k]+w[i]。也就是说原来指数级的策略中有很多策略都是冗余的,通过一次01背包后,将主件i转化为 V-c[i]+1个物品的物品组,就可以直接应用P06的算法解决问题了。

更一般的问题
更一般的问题是:依赖关系以图论中“森林”的形式给出(森林即多叉树的集合),也就是说,主件的附件仍然可以具有自己的附件集合,限制只是每个物品最多只依赖于一个物品(只有一个主件)且不出现循环依赖。

解决这个问题仍然可以用将每个主件及其附件集合转化为物品组的方式。唯一不同的是,由于附件可能还有附件,就不能将每个附件都看作一个一般的01 背包中的物品了。若这个附件也有附件集合,则它必定要被先转化为物品组,然后用分组的背包问题解出主件及其附件集合所对应的附件组中各个费用的附件所对应的价值。

事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性。这已经触及到了“泛化物品”的思想。看完P08后,你会发现这个“依赖关系树”每一个子树都等价于一件泛化物品,求某节点为根的子树对应的泛化物品相当于求其所有儿子的对应的泛化物品之和。

小结
NOIP2006的那道背包问题我做得很失败,写了上百行的代码,却一分未得。后来我通过思考发现通过引入“物品组”和“依赖”的概念可以加深对这题的理解,还可以解决它的推广问题。用物品组的思想考虑那题中极其特殊的依赖关系:物品不能既作主件又作附件,每个主件最多有两个附件,可以发现一个主件和它的两个附件等价于一个由四个物品组成的物品组,这便揭示了问题的某种本质。

我想说:失败不是什么丢人的事情,从失败中全无收获才是。

P08: 泛化物品
定义
考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。

更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0..V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。

这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组h[0..V],给它费用v,可得到价值h[V]。

一个费用为c价值为w的物品,如果它是01背包中的物品,那么把它看成泛化物品,它就是除了h(c)=w其它函数值都为0的一个函数。如果它是完全背包中的物品,那么它可以看成这样一个函数,仅当v被c整除时有h(v)=v/c*w,其它函数值均为0。如果它是多重背包中重复次数最多为n的物品,那么它对应的泛化物品的函数有h(v)=v/c*w仅当v被c整除且v/c<=n,其它情况函数值均为0。

一个物品组可以看作一个泛化物品h。对于一个0..V中的v,若物品组中不存在费用为v的的物品,则h(v)=0,否则h(v)为所有费用为v的物品的最大价值。P07中每个主件及其附件集合等价于一个物品组,自然也可看作一个泛化物品。

泛化物品的和
如果面对两个泛化物品h和l,要用给定的费用从这两个泛化物品中得到最大的价值,怎么求呢?事实上,对于一个给定的费用v,只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于0..V的每一个整数v,可以求得费用v分配到h和l中的最大价值f(v)。也即f(v)=max{h(k) +l(v-k)|0<=k<=v}。可以看到,f也是一个由泛化物品h和l决定的定义域为0..V的函数,也就是说,f是一个由泛化物品h和 l决定的泛化物品。

由此可以定义泛化物品的和:h、l都是泛化物品,若泛化物品f满足f(v)=max{h(k)+l(v-k)|0<=k<=v},则称f是h与l的和,即f=h+l。这个运算的时间复杂度是O(V^2)。

泛化物品的定义表明:在一个背包问题中,若将两个泛化物品代以它们的和,不影响问题的答案。事实上,对于其中的物品都是泛化物品的背包问题,求它的答案的过程也就是求所有这些泛化物品之和的过程。设此和为s,则答案就是s[0..V]中的最大值。

背包问题的泛化物品
一个背包问题中,可能会给出很多条件,包括每种物品的费用、价值等属性,物品之间的分组、依赖等关系等。但肯定能将问题对应于某个泛化物品。也就是说,给定了所有条件以后,就可以对每个非负整数v求得:若背包容量为v,将物品装入背包可得到的最大价值是多少,这可以认为是定义在非负整数集上的一件泛化物品。这个泛化物品——或者说问题所对应的一个定义域为非负整数的函数——包含了关于问题本身的高度浓缩的信息。一般而言,求得这个泛化物品的一个子域(例如0..V)的值之后,就可以根据这个函数的取值得到背包问题的最终答案。

综上所述,一般而言,求解背包问题,即求解这个问题所对应的一个函数,即该问题的泛化物品。而求解某个泛化物品的一种方法就是将它表示为若干泛化物品的和然后求之。

小结
本讲可以说都是我自己的原创思想。具体来说,是我在学习函数式编程的 Scheme 语言时,用函数编程的眼光审视各类背包问题得出的理论。这一讲真的很抽象,也许在“模型的抽象程度”这一方面已经超出了NOIP的要求,所以暂且看不懂也没关系。相信随着你的OI之路逐渐延伸,有一天你会理解的。

我想说:“思考”是一个OIer最重要的品质。简单的问题,深入思考以后,也能发现更多。

P09: 背包问题问法的变化
以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。

例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。

还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的max改成min即可。

下面说一些变化更大的问法。

输出方案
一般而言,背包问题是要求一个最优值,如果要求输出这个最优值的方案,可以参照一般动态规划问题输出方案的方法:记录下每个状态的最优值是由状态转移方程的哪一项推出来的,换句话说,记录下它是由哪一个策略推出来的。便可根据这条策略找到上一个状态,从上一个状态接着向前推即可。

还是以01背包为例,方程为f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。再用一个数组g[i] [v],设g[i][v]=0表示推出f[i][v]的值时是采用了方程的前一项(也即f[i][v]=f[i-1][v]),g[i][v]表示采用了方程的后一项。注意这两项分别表示了两种策略:未选第i个物品及选了第i个物品。那么输出方案的伪代码可以这样写(设最终状态为f[N][V]):

i=N
v=V
while(i>0)
if(g[i][v]==0)
print "未选第i项物品"
else if(g[i][v]==1)
print "选了第i项物品"
v=v-c[i]

另外,采用方程的前一项或后一项也可以在输出方案的过程中根据f[i][v]的值实时地求出来,也即不须纪录g数组,将上述代码中的g[i] [v]==0改成f[i][v]==f[i-1][v],g[i][v]==1改成f[i][v]==f[i-1][v-c[i]]+w[i]也可。

输出字典序最小的最优方案
这里“字典序最小”的意思是1..N号物品的选择方案排列出来以后字典序最小。以输出01背包最小字典序的方案为例。

一般而言,求一个字典序最小的最优方案,只需要在转移时注意策略。首先,子问题的定义要略改一些。我们注意到,如果存在一个选了物品1的最优方案,那么答案一定包含物品1,原问题转化为一个背包容量为v-c[1],物品为2..N的子问题。反之,如果答案不包含物品1,则转化成背包容量仍为V,物品为2..N的子问题。不管答案怎样,子问题的物品都是以i..N而非前所述的1..i的形式来定义的,所以状态的定义和转移方程都需要改一下。但也许更简易的方法是先把物品逆序排列一下,以下按物品已被逆序排列来叙述。

在这种情况下,可以按照前面经典的状态转移方程来求值,只是输出方案的时候要注意:从N到1输入时,如果f[i][v]==f[i-v]及f[i][v]==f[i-1][f-c[i]]+w[i]同时成立,应该按照后者(即选择了物品i)来输出方案。

求方案总数
对于一个给定了背包容量、物品费用、物品间相互关系(分组、依赖等)的背包问题,除了再给定每个物品的价值后求可得到的最大价值外,还可以得到装满背包或将背包装至某一指定容量的方案总数。

对于这类改变问法的问题,一般只需将状态转移方程中的max改成sum即可。例如若每件物品均是01背包中的物品,转移方程即为f[i][v]=sum{f[i-1][v],f[i-1][v-c[i]]+w[i]},初始条件f[0][0]=1。

事实上,这样做可行的原因在于状态转移方程已经考察了所有可能的背包组成方案。

最优方案的总数
这里的最优方案是指物品总价值最大的方案。还是以01背包为例。

结合求最大总价值和方案总数两个问题的思路,最优方案的总数可以这样求:f[i][v]意义同前述,g[i][v]表示这个子问题的最优方案的总数,则在求f[i][v]的同时求g[i][v]的伪代码如下:

for i=1..N
for v=0..V
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
g[i][v]=0
if(f[i][v]==f[i-1][v])
inc(g[i][v],g[i-1][v]
if(f[i][v]==f[i-1][v-c[i]]+w[i])
inc(g[i][v],g[i-1][v-c[i]])

如果你是第一次看到这样的问题,请仔细体会上面的伪代码。

小结
显然,这里不可能穷尽背包类动态规划问题所有的问法。甚至还存在一类将背包类动态规划问题与其它领域(例如数论、图论)结合起来的问题,在这篇论背包问题的专文中也不会论及。但只要深刻领会前述所有类别的背包问题的思路和状态转移方程,遇到其它的变形问法,只要题目难度还属于NOIP,应该也不难想出算法。

posted @ 2009-07-24 22:23 abilitytao 阅读(380) | 评论 (0)编辑 收藏

我的"背包"学习总结(超详细版)(转)

     摘要: 记得去年的校圣诞编程大赛的初赛和复赛中有3,4道类型相似的题目,当时对于刚加入ACMER行列的我并不了解这是哪一类的题目,只觉得这些题目有一定的规律。后来写的程序多了,接触的算法也多了,慢慢的知道那3,4道题目其实是动态规划下的”背包问题”.现在基本上了解了这类题目的解题思路和应对方法,故想借此对各种背包问题做一个详细的解释.    &nbs...  阅读全文

posted @ 2009-07-24 22:06 abilitytao 阅读(509) | 评论 (0)编辑 收藏

POJ 3368 Frequent values(线段树+离散化)

     摘要: 最近在研究线段树这个数据结构,发现这东西还挺耐玩的,它没有固定的模式,具体的构建方法要依据不同题目的具体要求而定,虽然如此,不过大致的思路还是差不多,充其量不过改改节点里面的域罢了。这题我看了半天,因为看到有区间了,而且数据量又很大,显然要用log L的算法,于是只能是线段树,可问题在于怎么维护这颗线段树?由于给出的序列一定是非递减的,所以如果两个数字相同的话,它们中间的数字肯定相同。具体的算法是...  阅读全文

posted @ 2009-07-24 21:31 abilitytao 阅读(1715) | 评论 (1)编辑 收藏

POJ 3264 Balanced Lineup(RMQ问题,线段树解决)

最近在看线段树,发现线段树其实是一个非常有用的数据结构,用它可以在logL的时间内完成一条线段的插入,查询等,由于线段树的特殊性质,使得它在处理某些区间的问题上具有不可替代的优越性。
POJ3264的题意是这样的,给你一串数字,再给你一个区间[a,b],求区间[a,b]上最大数减去最小数的最大值,即经典的RMQ问题。
方法是首先建立[1,n]的线段树,然后向线段树中插入所有线段,其实在这里指的就是叶子,因为叶子可以认为是[a,a]的线段,插入的途中,修改每一个节点所对应区间的最大值和最小值(这里是先序遍历),然后再查询即可。查询的时候,只有当当前线段完全覆盖时,才更新信息返回,否则应该继续往下查询,直到覆盖为止!
个人通过这个题对线段树的领悟得到的极大的加深,线段树将一个很大区间的插入查询问题分解成为很多小区间的行为,再把它们进行组合,从而得到结果。这是因为你在对比你查询区间大的区间上查询,结果是不精确的(想想为什么?),所以,只有分解到小区间上,才能够获得准确的答案~
代码如下:

//This is the source code for POJ 3264
//created by abilitytao
//2009年7月23日19:11:55
//attention:This is the my first time to use the Segment Tree,congratulations!
#include<iostream>
#include
<algorithm>
#include
<cmath>
#include
<cstring>
#include
<cstdio>
#include
<cstdlib>
using namespace std;
#define MAX 10000000
//由于N即为线段树最底层的节点数,则线段树最高为(ceil)log2 N+1=17层;
//则线段树最多有2^17-1个节点=131071
//上述节点数绝对满足要求


struct node
{
    
int left;
    
int right;
    
int min;
    
int max;
    node 
*lchild;
    node 
*rchild;
}
nodeset[MAX];//我们预先构造出这些节点可以节省大量动态建立节点的时间


int minnum;
int maxnum;

node 
*Newnode()//封装一个新建节点的函数,可以把一些“构造函数”写在里面
{
    
static int count=0;//静态变量
    node *temp=&nodeset[count++];
    temp
->max=-99999999;//初始化max
    temp->min=99999999;//初始化min
    temp->lchild=NULL;
    temp
->right=NULL;
    
return temp;
}



node 
*Build(int l,int r)//建立区间l到区间r上的线段树
{
    node 
*root=Newnode();
    root
->left=l;
    root
->right=r;
    
if(l+1<=r)
    
{
        
int mid=(l+r)>>1;
        root
->lchild=Build(l,mid);
        root
->rchild=Build(mid+1,r);
    }

    
return root;
}



void Insert(node *root,int i,int num)//插入节点,实际上是同步更新线段上的最大最小值
{
    
if(root->left==i&&root->right==i)
    
{
        
        root
->max=num;
        root
->min=num;
        
return ;
    }

    
if(root->min>num)
        root
->min=num;
    
if(root->max<num)
        root
->max=num;
    
    
if(root->lchild->left<=i&&root->lchild->right>=i)
        Insert(root
->lchild,i,num);
    
else if(root->rchild->left<=i&&root->rchild->right>=i)
        Insert(root
->rchild,i,num);
}




void Query(node *root,int l,int r)//查询函数
{
    
    
if(root->min>minnum&&root->max<maxnum)
        
return;//这两句实际上是剪枝,入过当前线段上的最小值比我已经查询到的最小值还大,可以不必再往下查询(反之亦然) ^_^

    
if(root->left==l&&root->right==r)
    
{
        
if(root->min<minnum)
            minnum
=root->min;
        
if(root->max>maxnum)
            maxnum
=root->max;
        
return ;
    }
//只有当线段被完全覆盖时,才查询线段中的信息
    if(root->lchild->left<=l&&root->lchild->right>=r)
        Query(root
->lchild,l,r);//若可以查询左儿子,查询之
    else if(root->rchild->left<=l&&root->rchild->right>=r)
        Query(root
->rchild,l,r);//若可以查询有儿子,查询之
    else
    
{

        
int mid=(root->left+root->right)>>1;
        Query(root
->lchild,l,mid);
        Query(root
->rchild,mid+1,r);
    }
//若被查询线段被中间阶段,则分别查询之
}




int main()
{

    
int n,q;
    node 
*root;
    scanf(
"%d%d",&n,&q);
    root
=Build(1,n);//建立线段树
    int i;
    
for(i=1;i<=n;i++)
    
{
        
int num;
        scanf(
"%d",&num);
        Insert(root,i,num);

    }
//完成全部插入
    for(i=1;i<=q;i++)
    
{
        maxnum
=-99999999;
        minnum
=99999999;

        
int a,b;
        scanf(
"%d%d",&a,&b);
        Query(root,a,b);
        printf(
"%d\n",maxnum-minnum);

    }
//查询,输出
    return 0;
}



如果有什么疑问或者改进方法(我想进办法也不能把它优化到1000MS以下),欢迎留言告诉我;

posted @ 2009-07-23 19:29 abilitytao 阅读(1867) | 评论 (5)编辑 收藏

PKU 1149, PIGS,构造网络流模型时,要注意合并节点和边(转)

    这道题目的大意是这样的:
  • 有 M 个猪圈(M ≤ 1000),每个猪圈里初始时有若干头猪。
  • 一开始所有猪圈都是关闭的。
  • 依次来了 N 个顾客(N ≤ 100),每个顾客分别会打开指定的几个猪圈,从中买若干头猪。
  • 每个顾客分别都有他能够买的数量的上限。
  • 每个顾客走后,他打开的那些猪圈中的猪,都可以被任意地调换到其它开着的猪圈里,然后所有猪圈重新关上。
    问总共最多能卖出多少头猪。

    举个例子来说。有 3 个猪圈,初始时分别有 3、 1 和 10 头猪。依次来了 3 个顾客,第一个打开 1 号 和 2 号猪圈,最多买 2 头;第二个打开 1 号 和 3 号猪圈,最多买 3 头;第三个打开 2 号猪圈,最多买 6 头。那么,最好的可能性之一就是第一个顾客从 1 号圈买 2 头,然后把 1 号圈剩下的 1 头放到 2 号圈;第二个顾客从 3 号圈买 3 头;第三个顾客从 2 号圈买 2 头。总共卖出 2 + 3 + 2 = 7 头。□

    不难想像,这个问题的网络模型可以很直观地构造出来。就拿上面的例子来说,可以构造出图 1 所示的模型(图中凡是没有标数字的边,容量都是 +∞):
  • 三个顾客,就有三轮交易,每一轮分别都有 3 个猪圈和 1 个顾客的节点。
  • 从源点到第一轮的各个猪圈各有一条边,容量就是各个猪圈里的猪的初始数量。
  • 从各个顾客到汇点各有一条边,容量就是各个顾客能买的数量上限。
  • 在某一轮中,从该顾客打开的所有猪圈都有一条边连向该顾客,容量都是 +∞。
  • 最后一轮除外,从每一轮的 i 号猪圈都有一条边连向下一轮的 i 号猪圈,容量都是 +∞,表示这一轮剩下的猪可以留到下一轮。
  • 最后一轮除外,从每一轮被打开的所有猪圈,到下一轮的同样这些猪圈,两两之间都要连一条边,表示它们之间可以任意流通。



图 1

    不难想像,这个网络模型的最大流量就是最多能卖出的数量。图中最多有 2 + N + M × N ≈ 100,000 个节点。□

    这个模型虽然很直观,但是节点数太多了,计算速度肯定会很慢。其实不用再想别的算法,就让我们继续上面的例子,用合并的方法来简化这个网络模型。

    首先,最后一轮中没有打开的猪圈就可以从图中删掉了,也就是图 2红色的部分,显然它们对整个网络的流量没有任何影响。



图 2

    接着,看图 2蓝色的部分。根据我总结出的以下几个规律,可以把这 4 个点合并成一个:

    规律 1. 如果几个节点的流量的来源完全相同,则可以把它们合并成一个。

    规律 2. 如果几个节点的流量的去向完全相同,则可以把它们合并成一个。

    规律 3. 如果从点 u 到点 v 有一条流容量为 +∞ 的边,并且点 v 除了点 u 以外没有别的流量来源,则可以把这两个节点合并成一个。

    根据规律 1,可以把蓝色部分右边的 1、 2 号节点合并成一个;根据规律 2,可以把蓝色部分左边的 1、 2 号节点合并成一个;最后,根据规律 3,可以把蓝色部分的左边和右边(已经分别合并成了一个节点)合并成一个节点。于是,图 2 被简化成了图 3 的样子。也就是说,最后一轮除外,每一轮被打开的猪圈和下一轮的同样这些猪圈都可以被合并成一个点。



图 3

    接着,根据规律 3图 3 中的蓝色节点、2 号猪圈和 1 号顾客这三点可以合并成一个;图 3 中的两个 3 号猪圈和 2 号顾客也可以合并成一个点。当然,如果两点之间有多条同向的边,则这些边可以合并成一条,容量相加,这个道理很简单,就不用我多说了。最终,上例中的网络模型被简化成了图 4 的样子。□


图 4

    让我们从图 4 中重新总结一下构造这个网络模型的规则:
  • 每个顾客分别用一个节点来表示。
  • 对于每个猪圈的第一个顾客,从源点向他连一条边,容量就是该猪圈里的猪的初始数量。如果从源点到一名顾客有多条边,则可以把它们合并成一条,容量相加。
  • 对于每个猪圈,假设有 n 个顾客打开过它,则对所有整数 i ∈ [1, n),从该猪圈的第 i 个顾客向第 i + 1 个顾客连一条边,容量为 +∞。
  • 从各个顾客到汇点各有一条边,容量是各个顾客能买的数量上限。
    拿我们前面一直在讲的例子来说:1 号猪圈的第一个顾客是 1 号顾客,所以从源点到 1 号顾客有一条容量为 3 的边;1 号猪圈的第二个顾客是 2 号顾客,因此从 1 号顾客到 2 号顾客有一条容量为 +∞ 的边;2 号猪圈的第一个顾客也是 1 号顾客,所以从源点到 1 号顾客有一条容量为 1 的边,和之前已有的一条边合并起来,容量变成 4;2 号猪圈的第二个顾客是 3 号顾客,因此从 1 号顾客到 3 号顾客有一条容量为 +∞ 的边;3 号猪圈的第一个顾客是 2 号顾客,所以从源点到 2 号顾客有一条容量为 10 的边。□

    新的网络模型中最多只有 2 + N = 102 个节点,计算速度就可以相当快了。可以这样理解这个新的网络模型:对于某一个顾客,如果他打开了猪圈 h,则在他走后,他打开的所有猪圈里剩下的猪都有可能被换到 h 中,因而这些猪都有可能被 h 的下一个顾客买走。所以对于一个顾客打开的所有猪圈,从该顾客到各猪圈的下一个顾客,都要连一条容量为 +∞ 的边。

    在面对网络流问题时,如果一时想不出很好的构图方法,不如先构造一个最直观,或者说最“硬来”的模型,然后再用合并节点和边的方法来简直化这个模型。经过简化以后,好的构图思路自然就会涌现出来了。这是解决网络流问题的一个好方法。


转自:http://imlazy.ycool.com/post.2059102.html

posted @ 2009-07-12 06:42 abilitytao 阅读(207) | 评论 (0)编辑 收藏

仅列出标题
共42页: First 27 28 29 30 31 32 33 34 35 Last