|
Posted on 2010-08-17 18:21 acronix 阅读(2040) 评论(0) 编辑 收藏 引用 所属分类: hzshuai收集的模板
RMQ (Range Minimum/Maximum Query)问题是指: 对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题
主要方法及复杂度(处理复杂度和查询复杂度)如下: 1.朴素(即搜索) O(n)-O(n) 2.线段树(segment tree) O(n)-O(qlogn) 3.ST(实质是动态规划) O(nlogn)-O(1) 线段树方法: 线段树能在对数时间内在数组区间上进行更新与查询。 定义线段树在区间[i, j] 上如下: 第一个节点维护着区间 [i, j] 的信息。 if i<j , 那么左孩子维护着区间[i, (i+j)/2] 的信息,右孩子维护着区间[(i+j)/2+1, j] 的信息。 可知 N 个元素的线段树的高度 为 [logN] + 1(只有根节点的树高度为0) . 下面是区间 [0, 9] 的一个线段树: 线段树和堆有一样的结构, 因此如果一个节点编号为 x ,那么左孩子编号为2*x 右孩子编号为2*x+1.
使用线段树解决RMQ问题,关键维护一个数组M[num],num=2^(线段树高度+1). M[i]:维护着被分配给该节点(编号:i 线段树根节点编号:1)的区间的最小值元素的下标。 该数组初始状态为-1. 线段树的CPP代码:
#include<iostream> using namespace std; #define MAXN 100 #define MAXIND 256 //线段树节点个数 //构建线段树,目的:得到M数组. void initialize(int node, int b, int e, int M[], int A[]) { if (b == e) M[node] = b; //只有一个元素,只有一个下标 else { //递归实现左孩子和右孩子 initialize(2 * node, b, (b + e) / 2, M, A); initialize(2 * node + 1, (b + e) / 2 + 1, e, M, A); //search for the minimum value in the first and //second half of the interval if (A[M[2 * node]] <= A[M[2 * node + 1]]) M[node] = M[2 * node]; else M[node] = M[2 * node + 1]; } } //找出区间 [i, j] 上的最小值的索引 int query(int node, int b, int e, int M[], int A[], int i, int j) { int p1, p2; //查询区间和要求的区间没有交集 if (i > e || j < b) return -1; //if the current interval is included in //the query interval return M[node] if (b >= i && e <= j) return M[node]; //compute the minimum position in the //left and right part of the interval p1 = query(2 * node, b, (b + e) / 2, M, A, i, j); p2 = query(2 * node + 1, (b + e) / 2 + 1, e, M, A, i, j); //return the position where the overall //minimum is if (p1 == -1) return M[node] = p2; if (p2 == -1) return M[node] = p1; if (A[p1] <= A[p2]) return M[node] = p1; return M[node] = p2; } int main() { int M[MAXIND]; //下标1起才有意义,保存下标编号节点对应区间最小值的下标. memset(M,-1,sizeof(M)); int a[]={3,1,5,7,2,9,0,3,4,5}; initialize(1, 0, sizeof(a)/sizeof(a[0])-1, M, a); cout<<query(1, 0, sizeof(a)/sizeof(a[0])-1, M, a, 0, 5)<<endl; return 0; }
ST算法(Sparse Table):它是一种动态规划的方法。 以最小值为例。a为所寻找的数组. 用一个二维数组f(i,j)记录区间[i,i+2^j-1](持续2^j个)区间中的最小值。其中f[i,0] = a[i]; 所以,对于任意的一组(i,j),f(i,j) = min{f(i,j-1),f(i+2^(j-1),j-1)}来使用动态规划计算出来。 这个算法的高明之处不是在于这个动态规划的建立,而是它的查询:它的查询效率是O(1). 假设我们要求区间[m,n]中a的最小值,找到一个数k使得2^k<n-m+1. 这样,可以把这个区间分成两个部分:[m,m+2^k-1]和[n-2^k+1,n].我们发现,这两个区间是已经初始化好的. 前面的区间是f(m,k),后面的区间是f(n-2^k+1,k). 这样,只要看这两个区间的最小值,就可以知道整个区间的最小值! RMQ CPP代码
#include<iostream> #include<cmath> #include<algorithm> using namespace std;
#define M 100010 #define MAXN 500 #define MAXM 500 int dp[M][18]; /* *一维RMQ ST算法 *构造RMQ数组 makermq(int n,int b[]) O(nlog(n))的算法复杂度 *dp[i][j] 表示从i到i+2^j -1中最小的一个值(从i开始持续2^j个数) *dp[i][j]=min{dp[i][j-1],dp[i+2^(j-1)][j-1]} *查询RMQ rmq(int s,int v) *将s-v 分成两个2^k的区间 *即 k=(int)log2(s-v+1) *查询结果应该为 min(dp[s][k],dp[v-2^k+1][k]) */
void makermq(int n,int b[]) { int i,j; for(i=0;i<n;i++) dp[i][0]=b[i]; for(j=1;(1<<j)<=n;j++) for(i=0;i+(1<<j)-1<n;i++) dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } int rmq(int s,int v) { int k=(int)(log((v-s+1)*1.0)/log(2.0)); /* 或者int d = v - s+1 , k; for(k = 0; (1<<k) <= d; k++) ; k- -;*/ return min(dp[s][k],dp[v-(1<<k)+1][k]); }
void makeRmqIndex(int n,int b[]) //返回最小值对应的下标 { int i,j; for(i=0;i<n;i++) dp[i][0]=i; for(j=1;(1<<j)<=n;j++) for(i=0;i+(1<<j)-1<n;i++) dp[i][j]=b[dp[i][j-1]] < b[dp[i+(1<<(j-1))][j-1]]? dp[i][j-1]:dp[i+(1<<(j-1))][j-1]; } int rmqIndex(int s,int v,int b[]) { int k=(int)(log((v-s+1)*1.0)/log(2.0)); return b[dp[s][k]]<b[dp[v-(1<<k)+1][k]]? dp[s][k]:dp[v-(1<<k)+1][k]; }
int main() { int a[]={3,4,5,7,8,9,0,3,4,5}; //返回下标 makeRmqIndex(sizeof(a)/sizeof(a[0]),a); cout<<rmqIndex(0,9,a)<<endl; cout<<rmqIndex(4,9,a)<<endl; //返回最小值 makermq(sizeof(a)/sizeof(a[0]),a); cout<<rmq(0,9)<<endl; cout<<rmq(4,9)<<endl; return 0; }
应用:http://acm.pku.edu.cn/JudgeOnline/problem?id=3264 Cpp代码 #include<iostream> #include<stdio.h> #include<math.h> using namespace std; #define maxn 50001 int a[maxn]; int dpmax[maxn][40]; int dpmin[maxn][40]; int getmin(int a,int b) { if(a<b) return a; else return b; } int getmax(int a,int b) { if(a>b) return a; else return b; } void Make_Big_RMQ(int n) { int i,j; for(i=1;i<=n;i++) dpmax[i][0]=a[i]; for(j=1;j<=log((double)n)/log(2.0);j++) for(i=1;i+(1<<j)-1<=n;i++) { dpmax[i][j]=getmax(dpmax[i][j-1],dpmax[i+(1<<(j-1))][j-1]); } } void Make_Min_RMQ(int n) { int i,j; for(i=1;i<=n;i++) dpmin[i][0]=a[i]; for(j=1;j<=log((double)n)/log(2.0);j++) for(i=1;i+(1<<j)-1<=n;i++) { dpmin[i][j]=getmin(dpmin[i][j-1],dpmin[i+(1<<(j-1))][j-1]); } } int get_big_rmq(int a,int b) { int k=(int)(log((double)(b-a+1))/log(2.0)); return getmax(dpmax[a][k],dpmax[b-(1<<k)+1][k]); } int get_min_rmq(int a,int b) { int k=(int)(log((double)(b-a+1))/log(2.0)); return getmin(dpmin[a][k],dpmin[b-(1<<k)+1][k]); } int main() { int n,i,q,x,y; while(scanf("%d %d",&n,&q)!=EOF) { for(i=1;i<=n;i++) scanf("%d",&a[i]); Make_Big_RMQ(n); Make_Min_RMQ(n); for(i=1;i<=q;i++) { scanf("%d%d",&x,&y); printf("%d\n",get_big_rmq(x,y)-get_min_rmq(x,y)); } } return 0; }
|