The Linux Kernel Module Programming Guide
Peter Jay Salzman
Michael Burian
Ori Pomerantz
Copyright © 2001 Peter Jay Salzman
2007-05-18 ver 2.6.4
The Linux Kernel Module Programming Guide is a free book; you may reproduce and/or modify it under the terms of the Open Software License, version 1.1. You can obtain a copy of this license at http://opensource.org/licenses/osl.php.
This book is distributed in the hope it will be useful, but without any warranty, without even the implied warranty of merchantability or fitness for a particular purpose.
The author encourages wide distribution of this book for personal or commercial use, provided the above copyright notice remains intact and the method adheres to the provisions of the Open Software License. In summary, you may copy and distribute this book free of charge or for a profit. No explicit permission is required from the author for reproduction of this book in any medium, physical or electronic.
Derivative works and translations of this document must be placed under the Open Software License, and the original copyright notice must remain intact. If you have contributed new material to this book, you must make the material and source code available for your revisions. Please make revisions and updates available directly to the document maintainer, Peter Jay Salzman <p@dirac.org>. This will allow for the merging of updates and provide consistent revisions to the Linux community.
If you publish or distribute this book commercially, donations, royalties, and/or printed copies are greatly appreciated by the author and the Linux Documentation Project (LDP). Contributing in this way shows your support for free software and the LDP. If you have questions or comments, please contact the address above.
Chapter 1. Introduction
1.1. What Is A Kernel Module?
So, you want to write a kernel module. You know C, you've written a few normal programs to run as processes, and now you want to get to where the real action is, to where a single wild pointer can wipe out your file system and a core dump means a reboot.
What exactly is a kernel module? Modules are pieces of code that can be loaded and unloaded into the kernel upon demand. They extend the functionality of the kernel without the need to reboot the system. For example, one type of module is the device driver, which allows the kernel to access hardware connected to the system. Without modules, we would have to build monolithic kernels and add new functionality directly into the kernel image. Besides having larger kernels, this has the disadvantage of requiring us to rebuild and reboot the kernel every time we want new functionality.
1.2. How Do Modules Get Into The Kernel?
You can see what modules are already loaded into the kernel by running lsmod, which gets its information by reading the file /proc/modules.
How do these modules find their way into the kernel? When the kernel needs a feature that is not resident in the kernel, the kernel module daemon kmod execs modprobe to load the module in. modprobe is passed a string in one of two forms:
If modprobe is handed a generic identifier, it first looks for that string in the file /etc/modprobe.conf. If it finds an alias line like:
alias char-major-10-30 softdog
|
it knows that the generic identifier refers to the module softdog.ko.
Next, modprobe looks through the file /lib/modules/version/modules.dep, to see if other modules must be loaded before the requested module may be loaded. This file is created by depmod -a and contains module dependencies. For example, msdos.ko requires the fat.ko module to be already loaded into the kernel. The requested module has a dependency on another module if the other module defines symbols (variables or functions) that the requested module uses.
Lastly, modprobe uses insmod to first load any prerequisite modules into the kernel, and then the requested module. modprobe directs insmod to /lib/modules/version/, the standard directory for modules. insmod is intended to be fairly dumb about the location of modules, whereas modprobe is aware of the default location of modules, knows how to figure out the dependencies and load the modules in the right order. So for example, if you wanted to load the msdos module, you'd have to either run:
insmod /lib/modules/2.6.11/kernel/fs/fat/fat.ko insmod /lib/modules/2.6.11/kernel/fs/msdos/msdos.ko
|
or:
What we've seen here is: insmod requires you to pass it the full pathname and to insert the modules in the right order, while modprobe just takes the name, without any extension, and figures out all it needs to know by parsing/lib/modules/version/modules.dep.
Linux distros provide modprobe, insmod and depmod as a package called module-init-tools. In previous versions that package was called modutils. Some distros also set up some wrappers that allow both packages to be installed in parallel and do the right thing in order to be able to deal with 2.4 and 2.6 kernels. Users should not need to care about the details, as long as they're running recent versions of those tools.
Now you know how modules get into the kernel. There's a bit more to the story if you want to write your own modules which depend on other modules (we calling this `stacking modules'). But this will have to wait for a future chapter. We have a lot to cover before addressing this relatively high-level issue.
1.2.1. Before We Begin
Before we delve into code, there are a few issues we need to cover. Everyone's system is different and everyone has their own groove. Getting your first "hello world" program to compile and load correctly can sometimes be a trick. Rest assured, after you get over the initial hurdle of doing it for the first time, it will be smooth sailing thereafter.
1.2.1.1. Modversioning
A module compiled for one kernel won't load if you boot a different kernel unless you enable CONFIG_MODVERSIONS in the kernel. We won't go into module versioning until later in this guide. Until we cover modversions, the examples in the guide may not work if you're running a kernel with modversioning turned on. However, most stock Linux distro kernels come with it turned on. If you're having trouble loading the modules because of versioning errors, compile a kernel with modversioning turned off.
1.2.1.2. Using X
It is highly recommended that you type in, compile and load all the examples this guide discusses. It's also highly recommended you do this from a console. You should not be working on this stuff in X.
Modules can't print to the screen like printf() can, but they can log information and warnings, which ends up being printed on your screen, but only on a console. If you insmod a module from an xterm, the information and warnings will be logged, but only to your log files. You won't see it unless you look through your log files. To have immediate access to this information, do all your work from the console.
1.2.1.3. Compiling Issues and Kernel Version
Very often, Linux distros will distribute kernel source that has been patched in various non-standard ways, which may cause trouble.
A more common problem is that some Linux distros distribute incomplete kernel headers. You'll need to compile your code using various header files from the Linux kernel. Murphy's Law states that the headers that are missing are exactly the ones that you'll need for your module work.
To avoid these two problems, I highly recommend that you download, compile and boot into a fresh, stock Linux kernel which can be downloaded from any of the Linux kernel mirror sites. See the Linux Kernel HOWTO for more details.
Ironically, this can also cause a problem. By default, gcc on your system may look for the kernel headers in their default location rather than where you installed the new copy of the kernel (usually in /usr/src/. This can be fixed by using gcc's-I switch.
Chapter 2. Hello World
2.1. Hello, World (part 1): The Simplest Module
When the first caveman programmer chiseled the first program on the walls of the first cave computer, it was a program to paint the string `Hello, world' in Antelope pictures. Roman programming textbooks began with the `Salut, Mundi' program. I don't know what happens to people who break with this tradition, but I think it's safer not to find out. We'll start with a series of hello world programs that demonstrate the different aspects of the basics of writing a kernel module.
Here's the simplest module possible. Don't compile it yet; we'll cover module compilation in the next section.
Example 2-1. hello-1.c
/* * hello-1.c - The simplest kernel module. */ #include <linux/module.h> /* Needed by all modules */ #include <linux/kernel.h> /* Needed for KERN_INFO */
int init_module(void) { printk(KERN_INFO "Hello world 1.\n");
/* * A non 0 return means init_module failed; module can't be loaded. */ return 0; }
void cleanup_module(void) { printk(KERN_INFO "Goodbye world 1.\n"); }
|
Kernel modules must have at least two functions: a "start" (initialization) function called init_module() which is called when the module is insmoded into the kernel, and an "end" (cleanup) function called cleanup_module() which is called just before it is rmmoded. Actually, things have changed starting with kernel 2.3.13. You can now use whatever name you like for the start and end functions of a module, and you'll learn how to do this in Section 2.3. In fact, the new method is the preferred method. However, many people still use init_module() and cleanup_module() for their start and end functions.
Typically, init_module() either registers a handler for something with the kernel, or it replaces one of the kernel functions with its own code (usually code to do something and then call the original function). The cleanup_module()function is supposed to undo whatever init_module() did, so the module can be unloaded safely.
Lastly, every kernel module needs to include linux/module.h. We needed to include linux/kernel.h only for the macro expansion for the printk() log level, KERN_ALERT, which you'll learn about in Section 2.1.1.
2.1.1. Introducing printk()
Despite what you might think, printk() was not meant to communicate information to the user, even though we used it for exactly this purpose in hello-1! It happens to be a logging mechanism for the kernel, and is used to log information or give warnings. Therefore, each printk() statement comes with a priority, which is the <1> and KERN_ALERT you see. There are 8 priorities and the kernel has macros for them, so you don't have to use cryptic numbers, and you can view them (and their meanings) in linux/kernel.h. If you don't specify a priority level, the default priority,DEFAULT_MESSAGE_LOGLEVEL, will be used.
Take time to read through the priority macros. The header file also describes what each priority means. In practise, don't use number, like <4>. Always use the macro, like KERN_WARNING.
If the priority is less than int console_loglevel, the message is printed on your current terminal. If both syslogd andklogd are running, then the message will also get appended to /var/log/messages, whether it got printed to the console or not. We use a high priority, like KERN_ALERT, to make sure the printk() messages get printed to your console rather than just logged to your logfile. When you write real modules, you'll want to use priorities that are meaningful for the situation at hand.
2.2. Compiling Kernel Modules
Kernel modules need to be compiled a bit differently from regular userspace apps. Former kernel versions required us to care much about these settings, which are usually stored in Makefiles. Although hierarchically organized, many redundant settings accumulated in sublevel Makefiles and made them large and rather difficult to maintain. Fortunately, there is a new way of doing these things, called kbuild, and the build process for external loadable modules is now fully integrated into the standard kernel build mechanism. To learn more on how to compile modules which are not part of the official kernel (such as all the examples you'll find in this guide), see file linux/Documentation/kbuild/modules.txt.
So, let's look at a simple Makefile for compiling a module named hello-1.c:
Example 2-2. Makefile for a basic kernel module
obj-m += hello-1.o
all: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
|
From a technical point of view just the first line is really necessary, the "all" and "clean" targets were added for pure convenience.
Now you can compile the module by issuing the command make . You should obtain an output which resembles the following:
hostname:~/lkmpg-examples/02-HelloWorld# make make -C /lib/modules/2.6.11/build M=/root/lkmpg-examples/02-HelloWorld modules make[1]: Entering directory `/usr/src/linux-2.6.11' CC [M] /root/lkmpg-examples/02-HelloWorld/hello-1.o Building modules, stage 2. MODPOST CC /root/lkmpg-examples/02-HelloWorld/hello-1.mod.o LD [M] /root/lkmpg-examples/02-HelloWorld/hello-1.ko make[1]: Leaving directory `/usr/src/linux-2.6.11' hostname:~/lkmpg-examples/02-HelloWorld#
|
Note that kernel 2.6 introduces a new file naming convention: kernel modules now have a .ko extension (in place of the old .o extension) which easily distinguishes them from conventional object files. The reason for this is that they contain an additional .modinfo section that where additional information about the module is kept. We'll soon see what this information is good for.
Use modinfo hello-*.ko to see what kind of information it is.
hostname:~/lkmpg-examples/02-HelloWorld# modinfo hello-1.ko filename: hello-1.ko vermagic: 2.6.11 preempt PENTIUMII 4KSTACKS gcc-3.3 depends:
|
Nothing spectacular, so far. That changes once we're using modinfo on one of our the later examples, hello-5.ko .
hostname:~/lkmpg-examples/02-HelloWorld# modinfo hello-5.ko filename: hello-5.ko license: GPL author: Peter Jay Salzman vermagic: 2.6.11 preempt PENTIUMII 4KSTACKS gcc-3.3 depends: parm: myintArray:An array of integers (array of int) parm: mystring:A character string (charp) parm: mylong:A long integer (long) parm: myint:An integer (int) parm: myshort:A short integer (short) hostname:~/lkmpg-examples/02-HelloWorld#
|
Lot's of useful information to see here. An author string for bugreports, license information, even a short description of the parameters it accepts.
Additional details about Makefiles for kernel modules are available inlinux/Documentation/kbuild/makefiles.txt. Be sure to read this and the related files before starting to hack Makefiles. It'll probably save you lots of work.
Now it is time to insert your freshly-compiled module it into the kernel with insmod ./hello-1.ko (ignore anything you see about tainted kernels; we'll cover that shortly).
All modules loaded into the kernel are listed in /proc/modules. Go ahead and cat that file to see that your module is really a part of the kernel. Congratulations, you are now the author of Linux kernel code! When the novelty wears off, remove your module from the kernel by using rmmod hello-1. Take a look at /var/log/messages just to see that it got logged to your system logfile.
Here's another exercise for the reader. See that comment above the return statement in init_module()? Change the return value to something negative, recompile and load the module again. What happens?
2.3. Hello World (part 2)
As of Linux 2.4, you can rename the init and cleanup functions of your modules; they no longer have to be calledinit_module() and cleanup_module() respectively. This is done with the module_init() and module_exit()macros. These macros are defined in linux/init.h. The only caveat is that your init and cleanup functions must be defined before calling the macros, otherwise you'll get compilation errors. Here's an example of this technique:
Example 2-3. hello-2.c
/* * hello-2.c - Demonstrating the module_init() and module_exit() macros. * This is preferred over using init_module() and cleanup_module(). */ #include <linux/module.h> /* Needed by all modules */ #include <linux/kernel.h> /* Needed for KERN_INFO */ #include <linux/init.h> /* Needed for the macros */
static int __init hello_2_init(void) { printk(KERN_INFO "Hello, world 2\n"); return 0; }
static void __exit hello_2_exit(void) { printk(KERN_INFO "Goodbye, world 2\n"); }
module_init(hello_2_init); module_exit(hello_2_exit);
|
So now we have two real kernel modules under our belt. Adding another module is as simple as this:
Example 2-4. Makefile for both our modules
obj-m += hello-1.o obj-m += hello-2.o
all: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
|
Now have a look at linux/drivers/char/Makefile for a real world example. As you can see, some things get hardwired into the kernel (obj-y) but where are all those obj-m gone? Those familiar with shell scripts will easily be able to spot them. For those not, the obj-$(CONFIG_FOO) entries you see everywhere expand into obj-y or obj-m, depending on whether the CONFIG_FOO variable has been set to y or m. While we are at it, those were exactly the kind of variables that you have set in the linux/.config file, the last time when you said make menuconfig or something like that.
2.4. Hello World (part 3): The __init and __exitMacros
This demonstrates a feature of kernel 2.2 and later. Notice the change in the definitions of the init and cleanup functions. The __init macro causes the init function to be discarded and its memory freed once the init function finishes for built-in drivers, but not loadable modules. If you think about when the init function is invoked, this makes perfect sense.
There is also an __initdata which works similarly to __init but for init variables rather than functions.
The __exit macro causes the omission of the function when the module is built into the kernel, and like __exit, has no effect for loadable modules. Again, if you consider when the cleanup function runs, this makes complete sense; built-in drivers don't need a cleanup function, while loadable modules do.
These macros are defined in linux/init.h and serve to free up kernel memory. When you boot your kernel and see something like Freeing unused kernel memory: 236k freed, this is precisely what the kernel is freeing.
Example 2-5. hello-3.c
/* * hello-3.c - Illustrating the __init, __initdata and __exit macros. */ #include <linux/module.h> /* Needed by all modules */ #include <linux/kernel.h> /* Needed for KERN_INFO */ #include <linux/init.h> /* Needed for the macros */
static int hello3_data __initdata = 3;
static int __init hello_3_init(void) { printk(KERN_INFO "Hello, world %d\n", hello3_data); return 0; }
static void __exit hello_3_exit(void) { printk(KERN_INFO "Goodbye, world 3\n"); }
module_init(hello_3_init); module_exit(hello_3_exit);
|
2.5. Hello World (part 4): Licensing and Module Documentation
If you're running kernel 2.4 or later, you might have noticed something like this when you loaded proprietary modules:
# insmod xxxxxx.o Warning: loading xxxxxx.ko will taint the kernel: no license See http://www.tux.org/lkml/#export-tainted for information about tainted modules Module xxxxxx loaded, with warnings
|
In kernel 2.4 and later, a mechanism was devised to identify code licensed under the GPL (and friends) so people can be warned that the code is non open-source. This is accomplished by the MODULE_LICENSE() macro which is demonstrated in the next piece of code. By setting the license to GPL, you can keep the warning from being printed. This license mechanism is defined and documented in linux/module.h:
/* * The following license idents are currently accepted as indicating free * software modules * * "GPL" [GNU Public License v2 or later] * "GPL v2" [GNU Public License v2] * "GPL and additional rights" [GNU Public License v2 rights and more] * "Dual BSD/GPL" [GNU Public License v2 * or BSD license choice] * "Dual MIT/GPL" [GNU Public License v2 * or MIT license choice] * "Dual MPL/GPL" [GNU Public License v2 * or Mozilla license choice] * * The following other idents are available * * "Proprietary" [Non free products] * * There are dual licensed components, but when running with Linux it is the * GPL that is relevant so this is a non issue. Similarly LGPL linked with GPL * is a GPL combined work. * * This exists for several reasons * 1. So modinfo can show license info for users wanting to vet their setup * is free * 2. So the community can ignore bug reports including proprietary modules * 3. So vendors can do likewise based on their own policies */
|
Similarly, MODULE_DESCRIPTION() is used to describe what the module does, MODULE_AUTHOR() declares the module's author, and MODULE_SUPPORTED_DEVICE() declares what types of devices the module supports.
These macros are all defined in linux/module.h and aren't used by the kernel itself. They're simply for documentation and can be viewed by a tool like objdump. As an exercise to the reader, try and search fo these macros inlinux/drivers to see how module authors use these macros to document their modules.
I'd recommend to use something like grep -inr MODULE_AUTHOR * in /usr/src/linux-2.6.x/ . People unfamiliar with command line tools will probably like some web base solution, search for sites that offer kernel trees that got indexed with LXR. (or setup it up on your local machine).
Users of traditional Unix editors, like emacs or vi will also find tag files useful. They can be generated by make tags ormake TAGS in /usr/src/linux-2.6.x/ . Once you've got such a tagfile in your kerneltree you can put the cursor on some function call and use some key combination to directly jump to the definition function.
Example 2-6. hello-4.c
/* * hello-4.c - Demonstrates module documentation. */ #include <linux/module.h> /* Needed by all modules */ #include <linux/kernel.h> /* Needed for KERN_INFO */ #include <linux/init.h> /* Needed for the macros */ #define DRIVER_AUTHOR "Peter Jay Salzman <p@dirac.org>" #define DRIVER_DESC "A sample driver"
static int __init init_hello_4(void) { printk(KERN_INFO "Hello, world 4\n"); return 0; }
static void __exit cleanup_hello_4(void) { printk(KERN_INFO "Goodbye, world 4\n"); }
module_init(init_hello_4); module_exit(cleanup_hello_4);
/* * You can use strings, like this: */
/* * Get rid of taint message by declaring code as GPL. */ MODULE_LICENSE("GPL");
/* * Or with defines, like this: */ MODULE_AUTHOR(DRIVER_AUTHOR); /* Who wrote this module? */ MODULE_DESCRIPTION(DRIVER_DESC); /* What does this module do */
/* * This module uses /dev/testdevice. The MODULE_SUPPORTED_DEVICE macro might * be used in the future to help automatic configuration of modules, but is * currently unused other than for documentation purposes. */ MODULE_SUPPORTED_DEVICE("testdevice");
|
2.6. Passing Command Line Arguments to a Module
Modules can take command line arguments, but not with the argc/argv you might be used to.
To allow arguments to be passed to your module, declare the variables that will take the values of the command line arguments as global and then use the module_param() macro, (defined in linux/moduleparam.h) to set the mechanism up. At runtime, insmod will fill the variables with any command line arguments that are given, like ./insmod mymodule.ko myvariable=5. The variable declarations and macros should be placed at the beginning of the module for clarity. The example code should clear up my admittedly lousy explanation.
The module_param() macro takes 3 arguments: the name of the variable, its type and permissions for the corresponding file in sysfs. Integer types can be signed as usual or unsigned. If you'd like to use arrays of integers or strings seemodule_param_array() and module_param_string().
int myint = 3; module_param(myint, int, 0);
|
Arrays are supported too, but things are a bit different now than they were in the 2.4. days. To keep track of the number of parameters you need to pass a pointer to a count variable as third parameter. At your option, you could also ignore the count and pass NULL instead. We show both possibilities here:
int myintarray[2]; module_param_array(myintarray, int, NULL, 0); /* not interested in count */
int myshortarray[4]; int count; module_parm_array(myshortarray, short, , 0); /* put count into "count" variable */
|
A good use for this is to have the module variable's default values set, like an port or IO address. If the variables contain the default values, then perform autodetection (explained elsewhere). Otherwise, keep the current value. This will be made clear later on.
Lastly, there's a macro function, MODULE_PARM_DESC(), that is used to document arguments that the module can take. It takes two parameters: a variable name and a free form string describing that variable.
Example 2-7. hello-5.c
/* * hello-5.c - Demonstrates command line argument passing to a module. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/stat.h>
MODULE_LICENSE("GPL"); MODULE_AUTHOR("Peter Jay Salzman");
static short int myshort = 1; static int myint = 420; static long int mylong = 9999; static char *mystring = "blah"; static int myintArray[2] = { -1, -1 }; static int arr_argc = 0;
/* * module_param(foo, int, 0000) * The first param is the parameters name * The second param is it's data type * The final argument is the permissions bits, * for exposing parameters in sysfs (if non-zero) at a later stage. */
module_param(myshort, short, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP); MODULE_PARM_DESC(myshort, "A short integer"); module_param(myint, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); MODULE_PARM_DESC(myint, "An integer"); module_param(mylong, long, S_IRUSR); MODULE_PARM_DESC(mylong, "A long integer"); module_param(mystring, charp, 0000); MODULE_PARM_DESC(mystring, "A character string");
/* * module_param_array(name, type, num, perm); * The first param is the parameter's (in this case the array's) name * The second param is the data type of the elements of the array * The third argument is a pointer to the variable that will store the number * of elements of the array initialized by the user at module loading time * The fourth argument is the permission bits */ module_param_array(myintArray, int, &arr_argc, 0000); MODULE_PARM_DESC(myintArray, "An array of integers");
static int __init hello_5_init(void) { int i; printk(KERN_INFO "Hello, world 5\n=============\n"); printk(KERN_INFO "myshort is a short integer: %hd\n", myshort); printk(KERN_INFO "myint is an integer: %d\n", myint); printk(KERN_INFO "mylong is a long integer: %ld\n", mylong); printk(KERN_INFO "mystring is a string: %s\n", mystring); for (i = 0; i < (sizeof myintArray / sizeof (int)); i++) { printk(KERN_INFO "myintArray[%d] = %d\n", i, myintArray[i]); } printk(KERN_INFO "got %d arguments for myintArray.\n", arr_argc); return 0; }
static void __exit hello_5_exit(void) { printk(KERN_INFO "Goodbye, world 5\n"); }
module_init(hello_5_init); module_exit(hello_5_exit);
|
I would recommend playing around with this code:
satan# insmod hello-5.ko mystring="bebop" mybyte=255 myintArray=-1 mybyte is an 8 bit integer: 255 myshort is a short integer: 1 myint is an integer: 20 mylong is a long integer: 9999 mystring is a string: bebop myintArray is -1 and 420
satan# rmmod hello-5 Goodbye, world 5
satan# insmod hello-5.ko mystring="supercalifragilisticexpialidocious" \ > mybyte=256 myintArray=-1,-1 mybyte is an 8 bit integer: 0 myshort is a short integer: 1 myint is an integer: 20 mylong is a long integer: 9999 mystring is a string: supercalifragilisticexpialidocious myintArray is -1 and -1
satan# rmmod hello-5 Goodbye, world 5
satan# insmod hello-5.ko mylong=hello hello-5.o: invalid argument syntax for mylong: 'h'
|
2.7. Modules Spanning Multiple Files
Sometimes it makes sense to divide a kernel module between several source files.
Here's an example of such a kernel module.
Example 2-8. start.c
/* * start.c - Illustration of multi filed modules */
#include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */
int init_module(void) { printk(KERN_INFO "Hello, world - this is the kernel speaking\n"); return 0; }
|
The next file:
Example 2-9. stop.c
/* * stop.c - Illustration of multi filed modules */
#include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */
void cleanup_module() { printk(KERN_INFO "Short is the life of a kernel module\n"); }
|
And finally, the makefile:
Example 2-10. Makefile
obj-m += hello-1.o obj-m += hello-2.o obj-m += hello-3.o obj-m += hello-4.o obj-m += hello-5.o obj-m += startstop.o startstop-objs := start.o stop.o
all: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
clean: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
|
This is the complete makefile for all the examples we've seen so far. The first five lines are nothing special, but for the last example we'll need two lines. First we invent an object name for our combined module, second we tell make what object files are part of that module.
2.8. Building modules for a precompiled kernel
Obviously, we strongly suggest you to recompile your kernel, so that you can enable a number of useful debugging features, such as forced module unloading (MODULE_FORCE_UNLOAD): when this option is enabled, you can force the kernel to unload a module even when it believes it is unsafe, via a rmmod -f module command. This option can save you a lot of time and a number of reboots during the development of a module.
Nevertheless, there is a number of cases in which you may want to load your module into a precompiled running kernel, such as the ones shipped with common Linux distributions, or a kernel you have compiled in the past. In certain circumstances you could require to compile and insert a module into a running kernel which you are not allowed to recompile, or on a machine that you prefer not to reboot. If you can't think of a case that will force you to use modules for a precompiled kernel you might want to skip this and treat the rest of this chapter as a big footnote.
Now, if you just install a kernel source tree, use it to compile your kernel module and you try to insert your module into the kernel, in most cases you would obtain an error as follows:
insmod: error inserting 'poet_atkm.ko': -1 Invalid module format
|
Less cryptical information are logged to /var/log/messages:
Jun 4 22:07:54 localhost kernel: poet_atkm: version magic '2.6.5-1.358custom 686 REGPARM 4KSTACKS gcc-3.3' should be '2.6.5-1.358 686 REGPARM 4KSTACKS gcc-3.3'
|
In other words, your kernel refuses to accept your module because version strings (more precisely, version magics) do not match. Incidentally, version magics are stored in the module object in the form of a static string, starting with vermagic:. Version data are inserted in your module when it is linked against the init/vermagic.o file. To inspect version magics and other strings stored in a given module, issue the modinfo module.ko command:
[root@pcsenonsrv 02-HelloWorld]# modinfo hello-4.ko license: GPL author: Peter Jay Salzman <p@dirac.org> description: A sample driver vermagic: 2.6.5-1.358 686 REGPARM 4KSTACKS gcc-3.3 depends:
|
To overcome this problem we could resort to the --force-vermagic option, but this solution is potentially unsafe, and unquestionably inacceptable in production modules. Consequently, we want to compile our module in an environment which was identical to the one in which our precompiled kernel was built. How to do this, is the subject of the remainder of this chapter.
First of all, make sure that a kernel source tree is available, having exactly the same version as your current kernel. Then, find the configuration file which was used to compile your precompiled kernel. Usually, this is available in your current/boot directory, under a name like config-2.6.x. You may just want to copy it to your kernel source tree: cp /boot/config-`uname -r` /usr/src/linux-`uname -r`/.config.
Let's focus again on the previous error message: a closer look at the version magic strings suggests that, even with two configuration files which are exactly the same, a slight difference in the version magic could be possible, and it is sufficient to prevent insertion of the module into the kernel. That slight difference, namely the custom string which appears in the module's version magic and not in the kernel's one, is due to a modification with respect to the original, in the makefile that some distribution include. Then, examine your /usr/src/linux/Makefile, and make sure that the specified version information matches exactly the one used for your current kernel. For example, you makefile could start as follows:
VERSION = 2 PATCHLEVEL = 6 SUBLEVEL = 5 EXTRAVERSION = -1.358custom ...
|
In this case, you need to restore the value of symbol EXTRAVERSION to -1.358. We suggest to keep a backup copy of the makefile used to compile your kernel available in /lib/modules/2.6.5-1.358/build. A simple cp /lib/modules/`uname -r`/build/Makefile /usr/src/linux-`uname -r` should suffice. Additionally, if you already started a kernel build with the previous (wrong) Makefile, you should also rerun make, or directly modify symbol UTS_RELEASEin file /usr/src/linux-2.6.x/include/linux/version.h according to contents of file/lib/modules/2.6.x/build/include/linux/version.h, or overwrite the latter with the first.
Now, please run make to update configuration and version headers and objects:
[root@pcsenonsrv linux-2.6.x]# make CHK include/linux/version.h UPD include/linux/version.h SYMLINK include/asm -> include/asm-i386 SPLIT include/linux/autoconf.h -> include/config/* HOSTCC scripts/basic/fixdep HOSTCC scripts/basic/split-include HOSTCC scripts/basic/docproc HOSTCC scripts/conmakehash HOSTCC scripts/kallsyms CC scripts/empty.o ...
|
If you do not desire to actually compile the kernel, you can interrupt the build process (CTRL-C) just after the SPLITline, because at that time, the files you need will be are ready. Now you can turn back to the directory of your module and compile it: It will be built exactly according your current kernel settings, and it will load into it without any errors.
Chapter 5. The /proc File System
5.1. The /proc File System
In Linux, there is an additional mechanism for the kernel and kernel modules to send information to processes --- the/proc file system. Originally designed to allow easy access to information about processes (hence the name), it is now used by every bit of the kernel which has something interesting to report, such as /proc/modules which provides the list of modules and /proc/meminfo which stats memory usage statistics.
The method to use the proc file system is very similar to the one used with device drivers --- a structure is created with all the information needed for the /proc file, including pointers to any handler functions (in our case there is only one, the one called when somebody attempts to read from the /proc file). Then, init_module registers the structure with the kernel and cleanup_module unregisters it.
The reason we use proc_register_dynamic is because we don't want to determine the inode number used for our file in advance, but to allow the kernel to determine it to prevent clashes. Normal file systems are located on a disk, rather than just in memory (which is where /proc is), and in that case the inode number is a pointer to a disk location where the file's index-node (inode for short) is located. The inode contains information about the file, for example the file's permissions, together with a pointer to the disk location or locations where the file's data can be found.
Because we don't get called when the file is opened or closed, there's nowhere for us to put try_module_get andtry_module_put in this module, and if the file is opened and then the module is removed, there's no way to avoid the consequences.
Here a simple example showing how to use a /proc file. This is the HelloWorld for the /proc filesystem. There are three parts: create the file /proc/helloworld in the function init_module, return a value (and a buffer) when the file/proc/helloworld is read in the callback function procfs_read, and delete the file /proc/helloworld in the function cleanup_module.
The /proc/helloworld is created when the module is loaded with the function create_proc_entry. The return value is a 'struct proc_dir_entry *', and it will be used to configure the file /proc/helloworld (for example, the owner of this file). A null return value means that the creation has failed.
Each time, everytime the file /proc/helloworld is read, the function procfs_read is called. Two parameters of this function are very important: the buffer (the first parameter) and the offset (the third one). The content of the buffer will be returned to the application which read it (for example the cat command). The offset is the current position in the file. If the return value of the function isn't null, then this function is called again. So be careful with this function, if it never returns zero, the read function is called endlessly.
% cat /proc/helloworld HelloWorld!
|
Example 5-1. procfs1.c
/* * procfs1.c - create a "file" in /proc * */
#include <linux/module.h> /* Specifically, a module */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/proc_fs.h> /* Necessary because we use the proc fs */
#define procfs_name "helloworld"
/** * This structure hold information about the /proc file * */ struct proc_dir_entry *Our_Proc_File;
/* Put data into the proc fs file. * * Arguments * ========= * 1. The buffer where the data is to be inserted, if * you decide to use it. * 2. A pointer to a pointer to characters. This is * useful if you don't want to use the buffer * allocated by the kernel. * 3. The current position in the file * 4. The size of the buffer in the first argument. * 5. Write a "1" here to indicate EOF. * 6. A pointer to data (useful in case one common * read for multiple /proc/... entries) * * Usage and Return Value * ====================== * A return value of zero means you have no further * information at this time (end of file). A negative * return value is an error condition. * * For More Information * ==================== * The way I discovered what to do with this function * wasn't by reading documentation, but by reading the * code which used it. I just looked to see what uses * the get_info field of proc_dir_entry struct (I used a * combination of find and grep, if you're interested), * and I saw that it is used in <kernel source * directory>/fs/proc/array.c. * * If something is unknown about the kernel, this is * usually the way to go. In Linux we have the great * advantage of having the kernel source code for * free - use it. */ int procfile_read(char *buffer, char **buffer_location, off_t offset, int buffer_length, int *eof, void *data) { int ret; printk(KERN_INFO "procfile_read (/proc/%s) called\n", procfs_name); /* * We give all of our information in one go, so if the * user asks us if we have more information the * answer should always be no. * * This is important because the standard read * function from the library would continue to issue * the read system call until the kernel replies * that it has no more information, or until its * buffer is filled. */ if (offset > 0) { /* we have finished to read, return 0 */ ret = 0; } else { /* fill the buffer, return the buffer size */ ret = sprintf(buffer, "HelloWorld!\n"); }
return ret; }
int init_module() { Our_Proc_File = create_proc_entry(procfs_name, 0644, NULL); if (Our_Proc_File == NULL) { remove_proc_entry(procfs_name, &proc_root); printk(KERN_ALERT "Error: Could not initialize /proc/%s\n", procfs_name); return -ENOMEM; }
Our_Proc_File->read_proc = procfile_read; Our_Proc_File->owner = THIS_MODULE; Our_Proc_File->mode = S_IFREG | S_IRUGO; Our_Proc_File->uid = 0; Our_Proc_File->gid = 0; Our_Proc_File->size = 37;
printk(KERN_INFO "/proc/%s created\n", procfs_name); return 0; /* everything is ok */ }
void cleanup_module() { remove_proc_entry(procfs_name, &proc_root); printk(KERN_INFO "/proc/%s removed\n", procfs_name); }
|
5.2. Read and Write a /proc File
We have seen a very simple example for a /proc file where we only read the file /proc/helloworld. It's also possible to write in a /proc file. It works the same way as read, a function is called when the /proc file is written. But there is a little difference with read, data comes from user, so you have to import data from user space to kernel space (withcopy_from_user or get_user)
The reason for copy_from_user or get_user is that Linux memory (on Intel architecture, it may be different under some other processors) is segmented. This means that a pointer, by itself, does not reference a unique location in memory, only a location in a memory segment, and you need to know which memory segment it is to be able to use it. There is one memory segment for the kernel, and one for each of the processes.
The only memory segment accessible to a process is its own, so when writing regular programs to run as processes, there's no need to worry about segments. When you write a kernel module, normally you want to access the kernel memory segment, which is handled automatically by the system. However, when the content of a memory buffer needs to be passed between the currently running process and the kernel, the kernel function receives a pointer to the memory buffer which is in the process segment. The put_user and get_user macros allow you to access that memory. These functions handle only one caracter, you can handle several caracters with copy_to_user and copy_from_user. As the buffer (in read or write function) is in kernel space, for write function you need to import data because it comes from user space, but not for the read function because data is already in kernel space.
Example 5-2. procfs2.c
/** * procfs2.c - create a "file" in /proc * */
#include <linux/module.h> /* Specifically, a module */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/proc_fs.h> /* Necessary because we use the proc fs */ #include <asm/uaccess.h> /* for copy_from_user */
#define PROCFS_MAX_SIZE 1024 #define PROCFS_NAME "buffer1k"
/** * This structure hold information about the /proc file * */ static struct proc_dir_entry *Our_Proc_File;
/** * The buffer used to store character for this module * */ static char procfs_buffer[PROCFS_MAX_SIZE];
/** * The size of the buffer * */ static unsigned long procfs_buffer_size = 0;
/** * This function is called then the /proc file is read * */ int procfile_read(char *buffer, char **buffer_location, off_t offset, int buffer_length, int *eof, void *data) { int ret; printk(KERN_INFO "procfile_read (/proc/%s) called\n", PROCFS_NAME); if (offset > 0) { /* we have finished to read, return 0 */ ret = 0; } else { /* fill the buffer, return the buffer size */ memcpy(buffer, procfs_buffer, procfs_buffer_size); ret = procfs_buffer_size; }
return ret; }
/** * This function is called with the /proc file is written * */ int procfile_write(struct file *file, const char *buffer, unsigned long count, void *data) { /* get buffer size */ procfs_buffer_size = count; if (procfs_buffer_size > PROCFS_MAX_SIZE ) { procfs_buffer_size = PROCFS_MAX_SIZE; } /* write data to the buffer */ if ( copy_from_user(procfs_buffer, buffer, procfs_buffer_size) ) { return -EFAULT; } return procfs_buffer_size; }
/** *This function is called when the module is loaded * */ int init_module() { /* create the /proc file */ Our_Proc_File = create_proc_entry(PROCFS_NAME, 0644, NULL); if (Our_Proc_File == NULL) { remove_proc_entry(PROCFS_NAME, &proc_root); printk(KERN_ALERT "Error: Could not initialize /proc/%s\n", PROCFS_NAME); return -ENOMEM; }
Our_Proc_File->read_proc = procfile_read; Our_Proc_File->write_proc = procfile_write; Our_Proc_File->owner = THIS_MODULE; Our_Proc_File->mode = S_IFREG | S_IRUGO; Our_Proc_File->uid = 0; Our_Proc_File->gid = 0; Our_Proc_File->size = 37;
printk(KERN_INFO "/proc/%s created\n", PROCFS_NAME); return 0; /* everything is ok */ }
/** *This function is called when the module is unloaded * */ void cleanup_module() { remove_proc_entry(PROCFS_NAME, &proc_root); printk(KERN_INFO "/proc/%s removed\n", PROCFS_NAME); }
|
5.3. Manage /proc file with standard filesystem
We have seen how to read and write a /proc file with the /proc interface. But it's also possible to manage /proc file with inodes. The main interest is to use advanced function, like permissions.
In Linux, there is a standard mechanism for file system registration. Since every file system has to have its own functions to handle inode and file operations, there is a special structure to hold pointers to all those functions, struct inode_operations, which includes a pointer to struct file_operations. In /proc, whenever we register a new file, we're allowed to specify which struct inode_operations will be used to access to it. This is the mechanism we use, astruct inode_operations which includes a pointer to a struct file_operations which includes pointers to ourprocfs_read and procfs_write functions.
Another interesting point here is the module_permission function. This function is called whenever a process tries to do something with the /proc file, and it can decide whether to allow access or not. Right now it is only based on the operation and the uid of the current user (as available in current, a pointer to a structure which includes information on the currently running process), but it could be based on anything we like, such as what other processes are doing with the same file, the time of day, or the last input we received.
It's important to note that the standard roles of read and write are reversed in the kernel. Read functions are used for output, whereas write functions are used for input. The reason for that is that read and write refer to the user's point of view --- if a process reads something from the kernel, then the kernel needs to output it, and if a process writes something to the kernel, then the kernel receives it as input.
Example 5-3. procfs3.c
/* * procfs3.c - create a "file" in /proc, use the file_operation way * to manage the file. */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */ #include <linux/proc_fs.h> /* Necessary because we use proc fs */ #include <asm/uaccess.h> /* for copy_*_user */
#define PROC_ENTRY_FILENAME "buffer2k" #define PROCFS_MAX_SIZE 2048
/** * The buffer (2k) for this module * */ static char procfs_buffer[PROCFS_MAX_SIZE];
/** * The size of the data hold in the buffer * */ static unsigned long procfs_buffer_size = 0;
/** * The structure keeping information about the /proc file * */ static struct proc_dir_entry *Our_Proc_File;
/** * This funtion is called when the /proc file is read * */ static ssize_t procfs_read(struct file *filp, /* see include/linux/fs.h */ char *buffer, /* buffer to fill with data */ size_t length, /* length of the buffer */ loff_t * offset) { static int finished = 0;
/* * We return 0 to indicate end of file, that we have * no more information. Otherwise, processes will * continue to read from us in an endless loop. */ if ( finished ) { printk(KERN_INFO "procfs_read: END\n"); finished = 0; return 0; } finished = 1; /* * We use put_to_user to copy the string from the kernel's * memory segment to the memory segment of the process * that called us. get_from_user, BTW, is * used for the reverse. */ if ( copy_to_user(buffer, procfs_buffer, procfs_buffer_size) ) { return -EFAULT; }
printk(KERN_INFO "procfs_read: read %lu bytes\n", procfs_buffer_size);
return procfs_buffer_size; /* Return the number of bytes "read" */ }
/* * This function is called when /proc is written */ static ssize_t procfs_write(struct file *file, const char *buffer, size_t len, loff_t * off) { if ( len > PROCFS_MAX_SIZE ) { procfs_buffer_size = PROCFS_MAX_SIZE; } else { procfs_buffer_size = len; } if ( copy_from_user(procfs_buffer, buffer, procfs_buffer_size) ) { return -EFAULT; }
printk(KERN_INFO "procfs_write: write %lu bytes\n", procfs_buffer_size); return procfs_buffer_size; }
/* * This function decides whether to allow an operation * (return zero) or not allow it (return a non-zero * which indicates why it is not allowed). * * The operation can be one of the following values: * 0 - Execute (run the "file" - meaningless in our case) * 2 - Write (input to the kernel module) * 4 - Read (output from the kernel module) * * This is the real function that checks file * permissions. The permissions returned by ls -l are * for referece only, and can be overridden here. */
static int module_permission(struct inode *inode, int op, struct nameidata *foo) { /* * We allow everybody to read from our module, but * only root (uid 0) may write to it */ if (op == 4 || (op == 2 && current->euid == 0)) return 0;
/* * If it's anything else, access is denied */ return -EACCES; }
/* * The file is opened - we don't really care about * that, but it does mean we need to increment the * module's reference count. */ int procfs_open(struct inode *inode, struct file *file) { try_module_get(THIS_MODULE); return 0; }
/* * The file is closed - again, interesting only because * of the reference count. */ int procfs_close(struct inode *inode, struct file *file) { module_put(THIS_MODULE); return 0; /* success */ }
static struct file_operations File_Ops_4_Our_Proc_File = { .read = procfs_read, .write = procfs_write, .open = procfs_open, .release = procfs_close, };
/* * Inode operations for our proc file. We need it so * we'll have some place to specify the file operations * structure we want to use, and the function we use for * permissions. It's also possible to specify functions * to be called for anything else which could be done to * an inode (although we don't bother, we just put * NULL). */
static struct inode_operations Inode_Ops_4_Our_Proc_File = { .permission = module_permission, /* check for permissions */ };
/* * Module initialization and cleanup */ int init_module() { /* create the /proc file */ Our_Proc_File = create_proc_entry(PROC_ENTRY_FILENAME, 0644, NULL); /* check if the /proc file was created successfuly */ if (Our_Proc_File == NULL){ printk(KERN_ALERT "Error: Could not initialize /proc/%s\n", PROC_ENTRY_FILENAME); return -ENOMEM; } Our_Proc_File->owner = THIS_MODULE; Our_Proc_File->proc_iops = &Inode_Ops_4_Our_Proc_File; Our_Proc_File->proc_fops = &File_Ops_4_Our_Proc_File; Our_Proc_File->mode = S_IFREG | S_IRUGO | S_IWUSR; Our_Proc_File->uid = 0; Our_Proc_File->gid = 0; Our_Proc_File->size = 80;
printk(KERN_INFO "/proc/%s created\n", PROC_ENTRY_FILENAME);
return 0; /* success */ }
void cleanup_module() { remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root); printk(KERN_INFO "/proc/%s removed\n", PROC_ENTRY_FILENAME); }
|
Still hungry for procfs examples? Well, first of all keep in mind, there are rumors around, claiming that procfs is on it's way out, consider using sysfs instead. Second, if you really can't get enough, there's a highly recommendable bonus level for procfs below linux/Documentation/DocBook/ . Use make help in your toplevel kernel directory for instructions about how to convert it into your favourite format. Example: make htmldocs . Consider using this mechanism, in case you want to document something kernel related yourself.
5.4. Manage /proc file with seq_file
As we have seen, writing a /proc file may be quite "complex". So to help people writting /proc file, there is an API named seq_file that helps formating a /proc file for output. It's based on sequence, which is composed of 3 functions: start(), next(), and stop(). The seq_file API starts a sequence when a user read the /proc file.
A sequence begins with the call of the function start(). If the return is a non NULL value, the function next() is called. This function is an iterator, the goal is to go thought all the data. Each time next() is called, the function show() is also called. It writes data values in the buffer read by the user. The function next() is called until it returns NULL. The sequence ends when next() returns NULL, then the function stop() is called.
BE CARREFUL: when a sequence is finished, another one starts. That means that at the end of function stop(), the function start() is called again. This loop finishes when the function start() returns NULL. You can see a scheme of this in the figure "How seq_file works".
Seq_file provides basic functions for file_operations, as seq_read, seq_lseek, and some others. But nothing to write in the /proc file. Of course, you can still use the same way as in the previous example.
Example 5-4. procfs4.c
/** * procfs4.c - create a "file" in /proc * This program uses the seq_file library to manage the /proc file. * */
#include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */ #include <linux/proc_fs.h> /* Necessary because we use proc fs */ #include <linux/seq_file.h> /* for seq_file */
#define PROC_NAME "iter"
MODULE_AUTHOR("Philippe Reynes"); MODULE_LICENSE("GPL");
/** * This function is called at the beginning of a sequence. * ie, when: * - the /proc file is read (first time) * - after the function stop (end of sequence) * */ static void *my_seq_start(struct seq_file *s, loff_t *pos) { static unsigned long counter = 0;
/* beginning a new sequence ? */ if ( *pos == 0 ) { /* yes => return a non null value to begin the sequence */ return &counter; } else { /* no => it's the end of the sequence, return end to stop reading */ *pos = 0; return NULL; } }
/** * This function is called after the beginning of a sequence. * It's called untill the return is NULL (this ends the sequence). * */ static void *my_seq_next(struct seq_file *s, void *v, loff_t *pos) { unsigned long *tmp_v = (unsigned long *)v; (*tmp_v)++; (*pos)++; return NULL; }
/** * This function is called at the end of a sequence * */ static void my_seq_stop(struct seq_file *s, void *v) { /* nothing to do, we use a static value in start() */ }
/** * This function is called for each "step" of a sequence * */ static int my_seq_show(struct seq_file *s, void *v) { loff_t *spos = (loff_t *) v; seq_printf(s, "%Ld\n", *spos); return 0; }
/** * This structure gather "function" to manage the sequence * */ static struct seq_operations my_seq_ops = { .start = my_seq_start, .next = my_seq_next, .stop = my_seq_stop, .show = my_seq_show };
/** * This function is called when the /proc file is open. * */ static int my_open(struct inode *inode, struct file *file) { return seq_open(file, &my_seq_ops); };
/** * This structure gather "function" that manage the /proc file * */ static struct file_operations my_file_ops = { .owner = THIS_MODULE, .open = my_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release }; /** * This function is called when the module is loaded * */ int init_module(void) { struct proc_dir_entry *entry;
entry = create_proc_entry(PROC_NAME, 0, NULL); if (entry) { entry->proc_fops = &my_file_ops; } return 0; }
/** * This function is called when the module is unloaded. * */ void cleanup_module(void) { remove_proc_entry(PROC_NAME, NULL); }
|
If you want more information, you can read this web page:
You can also read the code of fs/seq_file.c in the linux kernel.
Chapter 8. System Calls
8.1. System Calls
So far, the only thing we've done was to use well defined kernel mechanisms to register /proc files and device handlers. This is fine if you want to do something the kernel programmers thought you'd want, such as write a device driver. But what if you want to do something unusual, to change the behavior of the system in some way? Then, you're mostly on your own.
This is where kernel programming gets dangerous. While writing the example below, I killed the open() system call. This meant I couldn't open any files, I couldn't run any programs, and I couldn't shutdown the computer. I had to pull the power switch. Luckily, no files died. To ensure you won't lose any files either, please run sync right before you do theinsmod and the rmmod.
Forget about /proc files, forget about device files. They're just minor details. The real process to kernel communication mechanism, the one used by all processes, is system calls. When a process requests a service from the kernel (such as opening a file, forking to a new process, or requesting more memory), this is the mechanism used. If you want to change the behaviour of the kernel in interesting ways, this is the place to do it. By the way, if you want to see which system calls a program uses, run strace <arguments>.
In general, a process is not supposed to be able to access the kernel. It can't access kernel memory and it can't call kernel functions. The hardware of the CPU enforces this (that's the reason why it's called `protected mode').
System calls are an exception to this general rule. What happens is that the process fills the registers with the appropriate values and then calls a special instruction which jumps to a previously defined location in the kernel (of course, that location is readable by user processes, it is not writable by them). Under Intel CPUs, this is done by means of interrupt 0x80. The hardware knows that once you jump to this location, you are no longer running in restricted user mode, but as the operating system kernel --- and therefore you're allowed to do whatever you want.
The location in the kernel a process can jump to is called system_call. The procedure at that location checks the system call number, which tells the kernel what service the process requested. Then, it looks at the table of system calls (sys_call_table) to see the address of the kernel function to call. Then it calls the function, and after it returns, does a few system checks and then return back to the process (or to a different process, if the process time ran out). If you want to read this code, it's at the source file arch/$<$architecture$>$/kernel/entry.S, after the lineENTRY(system_call).
So, if we want to change the way a certain system call works, what we need to do is to write our own function to implement it (usually by adding a bit of our own code, and then calling the original function) and then change the pointer atsys_call_table to point to our function. Because we might be removed later and we don't want to leave the system in an unstable state, it's important for cleanup_module to restore the table to its original state.
The source code here is an example of such a kernel module. We want to `spy' on a certain user, and to printk() a message whenever that user opens a file. Towards this end, we replace the system call to open a file with our own function, called our_sys_open. This function checks the uid (user's id) of the current process, and if it's equal to the uid we spy on, it calls printk() to display the name of the file to be opened. Then, either way, it calls the original open()function with the same parameters, to actually open the file.
The init_module function replaces the appropriate location in sys_call_table and keeps the original pointer in a variable. The cleanup_module function uses that variable to restore everything back to normal. This approach is dangerous, because of the possibility of two kernel modules changing the same system call. Imagine we have two kernel modules, A and B. A's open system call will be A_open and B's will be B_open. Now, when A is inserted into the kernel, the system call is replaced with A_open, which will call the original sys_open when it's done. Next, B is inserted into the kernel, which replaces the system call with B_open, which will call what it thinks is the original system call, A_open, when it's done.
Now, if B is removed first, everything will be well---it will simply restore the system call to A_open, which calls the original. However, if A is removed and then B is removed, the system will crash. A's removal will restore the system call to the original, sys_open, cutting B out of the loop. Then, when B is removed, it will restore the system call to what it thinks is the original, A_open, which is no longer in memory. At first glance, it appears we could solve this particular problem by checking if the system call is equal to our open function and if so not changing it at all (so that B won't change the system call when it's removed), but that will cause an even worse problem. When A is removed, it sees that the system call was changed to B_open so that it is no longer pointing to A_open, so it won't restore it to sys_open before it is removed from memory. Unfortunately, B_open will still try to call A_open which is no longer there, so that even without removing B the system would crash.
Note that all the related problems make syscall stealing unfeasiable for production use. In order to keep people from doing potential harmful things sys_call_table is no longer exported. This means, if you want to do something more than a mere dry run of this example, you will have to patch your current kernel in order to have sys_call_table exported. In the example directory you will find a README and the patch. As you can imagine, such modifications are not to be taken lightly. Do not try this on valueable systems (ie systems that you do not own - or cannot restore easily). You'll need to get the complete sourcecode of this guide as a tarball in order to get the patch and the README. Depending on your kernel version, you might even need to hand apply the patch. Still here? Well, so is this chapter. If Wyle E. Coyote was a kernel hacker, this would be the first thing he'd try. ;)
Example 8-1. syscall.c
/* * syscall.c * * System call "stealing" sample. */
/* * Copyright (C) 2001 by Peter Jay Salzman */
/* * The necessary header files */
/* * Standard in kernel modules */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module, */ #include <linux/moduleparam.h> /* which will have params */ #include <linux/unistd.h> /* The list of system calls */
/* * For the current (process) structure, we need * this to know who the current user is. */ #include <linux/sched.h> #include <asm/uaccess.h>
/* * The system call table (a table of functions). We * just define this as external, and the kernel will * fill it up for us when we are insmod'ed * * sys_call_table is no longer exported in 2.6.x kernels. * If you really want to try this DANGEROUS module you will * have to apply the supplied patch against your current kernel * and recompile it. */ extern void *sys_call_table[];
/* * UID we want to spy on - will be filled from the * command line */ static int uid; module_param(uid, int, 0644);
/* * A pointer to the original system call. The reason * we keep this, rather than call the original function * (sys_open), is because somebody else might have * replaced the system call before us. Note that this * is not 100% safe, because if another module * replaced sys_open before us, then when we're inserted * we'll call the function in that module - and it * might be removed before we are. * * Another reason for this is that we can't get sys_open. * It's a static variable, so it is not exported. */ asmlinkage int (*original_call) (const char *, int, int);
/* * The function we'll replace sys_open (the function * called when you call the open system call) with. To * find the exact prototype, with the number and type * of arguments, we find the original function first * (it's at fs/open.c). * * In theory, this means that we're tied to the * current version of the kernel. In practice, the * system calls almost never change (it would wreck havoc * and require programs to be recompiled, since the system * calls are the interface between the kernel and the * processes). */ asmlinkage int our_sys_open(const char *filename, int flags, int mode) { int i = 0; char ch;
/* * Check if this is the user we're spying on */ if (uid == current->uid) { /* * Report the file, if relevant */ printk("Opened file by %d: ", uid); do { get_user(ch, filename + i); i++; printk("%c", ch); } while (ch != 0); printk("\n"); }
/* * Call the original sys_open - otherwise, we lose * the ability to open files */ return original_call(filename, flags, mode); }
/* * Initialize the module - replace the system call */ int init_module() { /* * Warning - too late for it now, but maybe for * next time... */ printk(KERN_ALERT "I'm dangerous. I hope you did a "); printk(KERN_ALERT "sync before you insmod'ed me.\n"); printk(KERN_ALERT "My counterpart, cleanup_module(), is even"); printk(KERN_ALERT "more dangerous. If\n"); printk(KERN_ALERT "you value your file system, it will "); printk(KERN_ALERT "be \"sync; rmmod\" \n"); printk(KERN_ALERT "when you remove this module.\n");
/* * Keep a pointer to the original function in * original_call, and then replace the system call * in the system call table with our_sys_open */ original_call = sys_call_table[__NR_open]; sys_call_table[__NR_open] = our_sys_open;
/* * To get the address of the function for system * call foo, go to sys_call_table[__NR_foo]. */
printk(KERN_INFO "Spying on UID:%d\n", uid);
return 0; }
/* * Cleanup - unregister the appropriate file from /proc */ void cleanup_module() { /* * Return the system call back to normal */ if (sys_call_table[__NR_open] != our_sys_open) { printk(KERN_ALERT "Somebody else also played with the "); printk(KERN_ALERT "open system call\n"); printk(KERN_ALERT "The system may be left in "); printk(KERN_ALERT "an unstable state.\n"); }
sys_call_table[__NR_open] = original_call; }
|
Chapter 9. Blocking Processes
9.1. Blocking Processes
What do you do when somebody asks you for something you can't do right away? If you're a human being and you're bothered by a human being, the only thing you can say is: "Not right now, I'm busy. Go away!". But if you're a kernel module and you're bothered by a process, you have another possibility. You can put the process to sleep until you can service it. After all, processes are being put to sleep by the kernel and woken up all the time (that's the way multiple processes appear to run on the same time on a single CPU).
This kernel module is an example of this. The file (called /proc/sleep) can only be opened by a single process at a time. If the file is already open, the kernel module calls wait_event_interruptible. This function changes the status of the task (a task is the kernel data structure which holds information about a process and the system call it's in, if any) toTASK_INTERRUPTIBLE, which means that the task will not run until it is woken up somehow, and adds it to WaitQ, the queue of tasks waiting to access the file. Then, the function calls the scheduler to context switch to a different process, one which has some use for the CPU.
When a process is done with the file, it closes it, and module_close is called. That function wakes up all the processes in the queue (there's no mechanism to only wake up one of them). It then returns and the process which just closed the file can continue to run. In time, the scheduler decides that that process has had enough and gives control of the CPU to another process. Eventually, one of the processes which was in the queue will be given control of the CPU by the scheduler. It starts at the point right after the call to module_interruptible_sleep_on. It can then proceed to set a global variable to tell all the other processes that the file is still open and go on with its life. When the other processes get a piece of the CPU, they'll see that global variable and go back to sleep.
So we'll use tail -f to keep the file open in the background, while trying to access it with another process (again in the background, so that we need not switch to a different vt). As soon as the first background process is killed with kill %1 , the second is woken up, is able to access the file and finally terminates.
To make our life more interesting, module_close doesn't have a monopoly on waking up the processes which wait to access the file. A signal, such as Ctrl+c (SIGINT) can also wake up a process. In that case, we want to return with -EINTR immediately. This is important so users can, for example, kill the process before it receives the file.
There is one more point to remember. Some times processes don't want to sleep, they want either to get what they want immediately, or to be told it cannot be done. Such processes use the O_NONBLOCK flag when opening the file. The kernel is supposed to respond by returning with the error code -EAGAIN from operations which would otherwise block, such as opening the file in this example. The program cat_noblock, available in the source directory for this chapter, can be used to open a file with O_NONBLOCK.
hostname:~/lkmpg-examples/09-BlockingProcesses# insmod sleep.ko hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Last input: hostname:~/lkmpg-examples/09-BlockingProcesses# tail -f /proc/sleep & Last input: Last input: Last input: Last input: Last input: Last input: Last input: tail: /proc/sleep: file truncated [1] 6540 hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Open would block hostname:~/lkmpg-examples/09-BlockingProcesses# kill %1 [1]+ Terminated tail -f /proc/sleep hostname:~/lkmpg-examples/09-BlockingProcesses# cat_noblock /proc/sleep Last input: hostname:~/lkmpg-examples/09-BlockingProcesses#
|
Example 9-1. sleep.c
/* * sleep.c - create a /proc file, and if several processes try to open it at * the same time, put all but one to sleep */
#include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */ #include <linux/proc_fs.h> /* Necessary because we use proc fs */ #include <linux/sched.h> /* For putting processes to sleep and waking them up */ #include <asm/uaccess.h> /* for get_user and put_user */
/* * The module's file functions */
/* * Here we keep the last message received, to prove that we can process our * input */ #define MESSAGE_LENGTH 80 static char Message[MESSAGE_LENGTH];
static struct proc_dir_entry *Our_Proc_File; #define PROC_ENTRY_FILENAME "sleep"
/* * Since we use the file operations struct, we can't use the special proc * output provisions - we have to use a standard read function, which is this * function */ static ssize_t module_output(struct file *file, /* see include/linux/fs.h */ char *buf, /* The buffer to put data to (in the user segment) */ size_t len, /* The length of the buffer */ loff_t * offset) { static int finished = 0; int i; char message[MESSAGE_LENGTH + 30];
/* * Return 0 to signify end of file - that we have nothing * more to say at this point. */ if (finished) { finished = 0; return 0; }
/* * If you don't understand this by now, you're hopeless as a kernel * programmer. */ sprintf(message, "Last input:%s\n", Message); for (i = 0; i < len && message[i]; i++) put_user(message[i], buf + i);
finished = 1; return i; /* Return the number of bytes "read" */ }
/* * This function receives input from the user when the user writes to the /proc * file. */ static ssize_t module_input(struct file *file, /* The file itself */ const char *buf, /* The buffer with input */ size_t length, /* The buffer's length */ loff_t * offset) { /* offset to file - ignore */ int i;
/* * Put the input into Message, where module_output will later be * able to use it */ for (i = 0; i < MESSAGE_LENGTH - 1 && i < length; i++) get_user(Message[i], buf + i); /* * we want a standard, zero terminated string */ Message[i] = '\0';
/* * We need to return the number of input characters used */ return i; }
/* * 1 if the file is currently open by somebody */ int Already_Open = 0;
/* * Queue of processes who want our file */ DECLARE_WAIT_QUEUE_HEAD(WaitQ); /* * Called when the /proc file is opened */ static int module_open(struct inode *inode, struct file *file) { /* * If the file's flags include O_NONBLOCK, it means the process doesn't * want to wait for the file. In this case, if the file is already * open, we should fail with -EAGAIN, meaning "you'll have to try * again", instead of blocking a process which would rather stay awake. */ if ((file->f_flags & O_NONBLOCK) && Already_Open) return -EAGAIN;
/* * This is the correct place for try_module_get(THIS_MODULE) because * if a process is in the loop, which is within the kernel module, * the kernel module must not be removed. */ try_module_get(THIS_MODULE);
/* * If the file is already open, wait until it isn't */
while (Already_Open) { int i, is_sig = 0;
/* * This function puts the current process, including any system * calls, such as us, to sleep. Execution will be resumed right * after the function call, either because somebody called * wake_up(&WaitQ) (only module_close does that, when the file * is closed) or when a signal, such as Ctrl-C, is sent * to the process */ wait_event_interruptible(WaitQ, !Already_Open);
/* * If we woke up because we got a signal we're not blocking, * return -EINTR (fail the system call). This allows processes * to be killed or stopped. */
/* * Emmanuel Papirakis: * * This is a little update to work with 2.2.*. Signals now are contained in * two words (64 bits) and are stored in a structure that contains an array of * two unsigned longs. We now have to make 2 checks in our if. * * Ori Pomerantz: * * Nobody promised me they'll never use more than 64 bits, or that this book * won't be used for a version of Linux with a word size of 16 bits. This code * would work in any case. */ for (i = 0; i < _NSIG_WORDS && !is_sig; i++) is_sig = current->pending.signal.sig[i] & ~current-> blocked.sig[i];
if (is_sig) { /* * It's important to put module_put(THIS_MODULE) here, * because for processes where the open is interrupted * there will never be a corresponding close. If we * don't decrement the usage count here, we will be * left with a positive usage count which we'll have no * way to bring down to zero, giving us an immortal * module, which can only be killed by rebooting * the machine. */ module_put(THIS_MODULE); return -EINTR; } }
/* * If we got here, Already_Open must be zero */
/* * Open the file */ Already_Open = 1; return 0; /* Allow the access */ }
/* * Called when the /proc file is closed */ int module_close(struct inode *inode, struct file *file) { /* * Set Already_Open to zero, so one of the processes in the WaitQ will * be able to set Already_Open back to one and to open the file. All * the other processes will be called when Already_Open is back to one, * so they'll go back to sleep. */ Already_Open = 0;
/* * Wake up all the processes in WaitQ, so if anybody is waiting for the * file, they can have it. */ wake_up(&WaitQ);
module_put(THIS_MODULE);
return 0; /* success */ }
/* * This function decides whether to allow an operation (return zero) or not * allow it (return a non-zero which indicates why it is not allowed). * * The operation can be one of the following values: * 0 - Execute (run the "file" - meaningless in our case) * 2 - Write (input to the kernel module) * 4 - Read (output from the kernel module) * * This is the real function that checks file permissions. The permissions * returned by ls -l are for reference only, and can be overridden here. */ static int module_permission(struct inode *inode, int op, struct nameidata *nd) { /* * We allow everybody to read from our module, but only root (uid 0) * may write to it */ if (op == 4 || (op == 2 && current->euid == 0)) return 0;
/* * If it's anything else, access is denied */ return -EACCES; }
/* * Structures to register as the /proc file, with pointers to all the relevant * functions. */
/* * File operations for our proc file. This is where we place pointers to all * the functions called when somebody tries to do something to our file. NULL * means we don't want to deal with something. */ static struct file_operations File_Ops_4_Our_Proc_File = { .read = module_output, /* "read" from the file */ .write = module_input, /* "write" to the file */ .open = module_open, /* called when the /proc file is opened */ .release = module_close, /* called when it's closed */ };
/* * Inode operations for our proc file. We need it so we'll have somewhere to * specify the file operations structure we want to use, and the function we * use for permissions. It's also possible to specify functions to be called * for anything else which could be done to an inode (although we don't bother, * we just put NULL). */
static struct inode_operations Inode_Ops_4_Our_Proc_File = { .permission = module_permission, /* check for permissions */ };
/* * Module initialization and cleanup */
/* * Initialize the module - register the proc file */
int init_module() {
Our_Proc_File = create_proc_entry(PROC_ENTRY_FILENAME, 0644, NULL); if (Our_Proc_File == NULL) { remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root); printk(KERN_ALERT "Error: Could not initialize /proc/test\n"); return -ENOMEM; } Our_Proc_File->owner = THIS_MODULE; Our_Proc_File->proc_iops = &Inode_Ops_4_Our_Proc_File; Our_Proc_File->proc_fops = &File_Ops_4_Our_Proc_File; Our_Proc_File->mode = S_IFREG | S_IRUGO | S_IWUSR; Our_Proc_File->uid = 0; Our_Proc_File->gid = 0; Our_Proc_File->size = 80; printk(KERN_INFO "/proc/test created\n"); return 0; }
/* * Cleanup - unregister our file from /proc. This could get dangerous if * there are still processes waiting in WaitQ, because they are inside our * open function, which will get unloaded. I'll explain how to avoid removal * of a kernel module in such a case in chapter 10. */ void cleanup_module() { remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root); printk(KERN_INFO "/proc/test removed\n"); }
|
Example 9-2. cat_noblock.c
/* cat_noblock.c - open a file and display its contents, but exit rather than * wait for input */
/* Copyright (C) 1998 by Ori Pomerantz */
#include <stdio.h> /* standard I/O */ #include <fcntl.h> /* for open */ #include <unistd.h> /* for read */ #include <stdlib.h> /* for exit */ #include <errno.h> /* for errno */
#define MAX_BYTES 1024*4
main(int argc, char *argv[]) { int fd; /* The file descriptor for the file to read */ size_t bytes; /* The number of bytes read */ char buffer[MAX_BYTES]; /* The buffer for the bytes */
/* Usage */ if (argc != 2) { printf("Usage: %s <filename>\n", argv[0]); puts("Reads the content of a file, but doesn't wait for input"); exit(-1); }
/* Open the file for reading in non blocking mode */ fd = open(argv[1], O_RDONLY | O_NONBLOCK);
/* If open failed */ if (fd == -1) { if (errno = EAGAIN) puts("Open would block"); else puts("Open failed"); exit(-1); }
/* Read the file and output its contents */ do { int i;
/* Read characters from the file */ bytes = read(fd, buffer, MAX_BYTES);
/* If there's an error, report it and die */ if (bytes == -1) { if (errno = EAGAIN) puts("Normally I'd block, but you told me not to"); else puts("Another read error"); exit(-1); }
/* Print the characters */ if (bytes > 0) { for(i=0; i<bytes; i++) putchar(buffer[i]); }
/* While there are no errors and the file isn't over */ } while (bytes > 0); }
|