巢穴

about:blank

#

linux内核情景分析笔记-存储管理

第2章 存储管理
LINUX页式管理
PGD          PMD          PT        PTE
页表目标     中间目录     页表     页表项

LINUX在32位地址下采取二层映射
#define PGDIR_SHIFT 22
#define PTRS_PER_PGD 1024

#define PMD_SHIFT 22
#define PTRS_PER_PMD 1

#define PTRS_PER_PTE 1024
根据以上宏定义,PMD被完美的架空了,而相当于采取了二层映射

其中PGD用了线性地址的最高10位 与  MMU 对应
线性地址的中间10位是所对应的PTE在PT中的索引
剩下的最低12位则是页中的偏移量

虚拟地址 = 段基地址:段偏移量
                            16位      32位
更准确的讲是段选择子了吧

在LINUX中段基地址 = 0(下面的____KERNEL_CS等),所以可以认为线性地址与虚拟地址总是相等的,但其本质不是一个东西


0xC0000000-0xFFFFFFFF为内核占用
0x0-0xBFFFFFFF为用户控件


内核的虚拟内存为简单的线性映射
#__PAGE_OFFSET (0xC0000000)
#define PAGE_OFFSET  ((unsigned long) __PAGE_OFFSET)
#define __pa(x) ((unsigned long)(x) - PAGE_OFFSET)
#define __va(x) ((void *)((unsigned long)(x) +PAGE_OFFSET)

__pa是从虚拟地址转换成物理地址
__va是从物理地址转换成虚拟地址


在GDT中有4个段描述符
其索引是2-5
分别是
__KERNEL_CS 内核代码段
__KERNEL_DS 内核数据段
__USER_CS 用户代码段
__USER_DS 用户数据段

#define start_thread(regs,new_eip,new_esp) do {\
 __asm__("movl %0,%%fs;movl %0,%%gs"::"r"(0)); \
 set_fs(USER_DS);
 regs->xds = __USER_DS; \
 regs->xes = __USER_DS; \
 regs->xss = __USER_DS; \
 regs->xcs = __USER_CS; \
 regs->eip = new_eip;   \
 regs->esp = new_esp;   \

}while(0)

通过这段宏可以看出,LINUX没用段式存储,虽然它也走了这个流程

 

MMU的流程 MMU使用物理地址

页式映射
从REG CR3拿PGD的地址
找到页面目录,线性地址中的高10位为索引,找到页面目录项,从中拿高20位作为页面表的索引,页面表与4k字节边界对齐,CPU自动补充前12位为0得到页面表地址。

然后拿线性地址的中间10位,得到页面表中的索引,拿到页面表项,页面表项的高20位在低位补充12个0,再加上线性地址的低12位组成物理地址。


mm_struct 任务相关的虚拟内存
vm_area_struct 一段虚拟内存的抽象,也可以理解为段
mm_struct中拥有vm_area_struct的指针
在vm_area_struct多的时候使用avl树来存储
mem_map_t  物理页表
zone_struct 物理内存的区结构,zone_struct把物理内存分成了几个部分
ZONE_DMA 0 供DMA使用
ZONE_NORMAL 普通使用
ZONE_HIGHMEN 高段内存,内核映射不到

物理内存之间区的划分并不是强制的,如果某一个区已经没有内存可用,是可以去别的区拿内存的

其实一直对内核的寻址有些疑问
不过刚刚似乎想通了
内核会做预映射,把PGD第768项以后的都做映射,也就是1G的空间
而这种映射应该是满足__pa()宏,即线性地址与物理地址是线性映射的。
所以最终__pa()宏被用作在内核代码中显性的获得某个线性地址所对应的物理地址
而MMU负责把一个线性地址隐式的转成了物理地址,而这已转换与内核代码无关。
不知这样理解是否正确?

今天只看到了这里
待续……

说起来把这么个东西放到首页很不好意思,主要目的是希望有看到的人帮我指正一下我所认知的错误或者解惑。谢谢啦:)

posted @ 2011-03-15 17:47 Vincent 阅读(1650) | 评论 (0)编辑 收藏

关于CppUnit的使用?

    首先,我是初学者,从无使用CppUnit的经验。

    项目进展到后期,想提高稳定性,在这个时候是否适合加入单元测试呢?
    找了几篇文章看了看,似乎谈单元测试就不得不谈TDD,但我看到的绝大多数人的观点是舍TDD,留单元测试
    好了,暂且不谈TDD,只谈单元测试,其中我看到一篇Blog的观点是,使用单元测试,来逐步重构代码,其论点就是真正适合单元测试的代码,能够更符合SOLID原则。
     这个看法是我目前比较认同的。
     另外看到一种使用方式是,只对算法类和一些基础类,进行单元测试。对于这种使用方式,我实不知使用CppUnit这种现成的较为自动化的单元测试的框架意义在哪。
    最后一个问题就是,如果我认为的前一种观点是正确的,那在我们的这个项目进行到的这个阶段,想要提高稳定性去做单元测试,是需要大量重构的,这样一个量会不会反而会影响稳定性?


     欢迎大家随意发表自己的观点哈,我只是想多了解一下。以便做出认为自己更适合的判断。

posted @ 2011-03-03 09:56 Vincent 阅读(2345) | 评论 (11)编辑 收藏

关于lua的coroutine

本质是串行,没有同步开销
虽然在用户态下,但是还是需要维护coroutine的状态,
也就是也会拥有自己的上下文切换的开销
更像是用户态下实现的线程,但抢占式的线程不论切换粒度再大或再小,都会有不可预知的行为,所要做同步,而coroutine是协作式的任务,
由自己交把自己的权利交出去,同步问题自然不用考虑了
自己小记一下

posted @ 2011-02-15 11:01 Vincent 阅读(338) | 评论 (0)编辑 收藏

Lisp的本质(The Nature of Lisp)(转)

                       Lisp的本质(The Nature of Lisp)

                             作者 Slava Akhmechet
                             译者 Alec Jang

              出处: http://www.defmacro.org/ramblings/lisp.html


简介

最初在web的某些角落偶然看到有人赞美Lisp时, 我那时已经是一个颇有经验的程序员。
在我的履历上, 掌握的语言范围相当广泛, 象C++, Java, C#主流语言等等都不在话下,
我觉得我差不多知道所有的有关编程语言的事情。对待编程语言的问题上, 我觉得自己不
太会遇到什么大问题。其实我大错特错了。

我试着学了一下Lisp, 结果马上就撞了墙。我被那些范例代码吓坏了。我想很多初次接触
Lisp语言的人, 一定也有过类似的感受。Lisp的语法太次了。一个语言的发明人, 居然不
肯用心弄出一套漂亮的语法, 那谁还会愿意学它。反正, 我是确确实实被那些难看的无数
的括号搞蒙了。

回过神来之后, 我和Lisp社区的那伙人交谈, 诉说我的沮丧心情。结果, 立马就有一大套
理论砸过来, 这套理论在Lisp社区处处可见, 几成惯例。比如说: Lisp的括号只是表面现
象; Lisp的代码和数据的表达方式没有差别, 而且比XML语法高明许多, 所以有无穷的好
处; Lisp有强大无比的元语言能力, 程序员可以写出自我维护的代码; Lisp可以创造出针
对特定应用的语言子集; Lisp的运行时和编译时没有明确的分界; 等等, 等等, 等等。这
么长的赞美词虽然看起来相当动人, 不过对我毫无意义。没人能给我演示这些东西是如何
应用的, 因为这些东西一般来说只有在大型系统才会用到。我争辩说, 这些东西传统语言
一样办得到。在和别人争论了数个小时之后, 我最终还是放弃了学Lisp的念头。为什么要
花费几个月的时间学习语法这么难看的语言呢? 这种语言的概念这么晦涩, 又没什么好懂
的例子。也许这语言不是该我这样的人学的。

几个月来, 我承受着这些Lisp辩护士对我心灵的重压。我一度陷入了困惑。我认识一些绝
顶聪明的人, 我对他们相当尊敬, 我看到他们对Lisp的赞美达到了宗教般的高度。这就是
说, Lisp中一定有某种神秘的东西存在, 我不能忍受自己对此的无知, 好奇心和求知欲最
终不可遏制。我于是咬紧牙关埋头学习Lisp, 经过几个月的时间费劲心力的练习, 终于,
我看到了那无穷无尽的泉水的源头。在经过脱胎换骨的磨练之后, 在经过七重地狱的煎熬
之后, 终于, 我明白了。

顿悟在突然之间来临。曾经许多次, 我听到别人引用雷蒙德(译者注: 论文<<大教堂和市
集>>的作者, 著名的黑客社区理论家)的话: "Lisp语言值得学习。当你学会Lisp之后, 你
会拥有深刻的体验。就算你平常并不用Lisp编程, 它也会使你成为更加优秀的程序员"。
过去, 我根本不懂这些话的含义, 我也不相信这是真的。可是现在我懂得了。这些话蕴含
的真理远远超过我过去的想像。我内心体会到一种神圣的情感, 一瞬间的顿悟, 几乎使我
对电脑科学的观念发生了根本的改变。

顿悟的那一刻, 我成了Lisp的崇拜者。我体验到了宗教大师的感受: 一定要把我的知识传
布开来, 至少要让10个迷失的灵魂得到拯救。按照通常的办法, 我把这些道理(就是刚开
始别人砸过来的那一套, 不过现在我明白了真实的含义)告诉旁人。结果太令人失望了,
只有少数几个人在我坚持之下, 发生了一点兴趣, 但是仅仅看了几眼Lisp代码, 他们就退
却了。照这样的办法, 也许费数年功夫能造就了几个Lisp迷, 但我觉得这样的结果太差强
人意了, 我得想一套有更好的办法。

我深入地思考了这个问题。是不是Lisp有什么很艰深的东西, 令得那么多老练的程序员都
不能领会? 不是, 没有任何绝对艰深的东西。因为我能弄懂, 我相信其他人也一定能。那
么问题出在那里? 后来我终于找到了答案。我的结论就是, 凡是教人学高级概念, 一定要
从他已经懂得的东西开始。如果学习过程很有趣, 学习的内容表达得很恰当, 新概念就会
变得相当直观。这就是我的答案。所谓元编程, 所谓数据和代码形式合一, 所谓自修改代
码, 所谓特定应用的子语言, 所有这些概念根本就是同族概念, 彼此互为解释, 肯定越讲
越不明白。还是从实际的例子出发最有用。

我把我的想法说给Lisp程序员听, 遭到了他们的反对。"这些东西本身当然不可能用熟悉
的知识来解释, 这些概念完全与众不同, 你不可能在别人已有的经验里找到类似的东西",
可是我认为这些都是遁词。他们又反问我, "你自己为啥不试一下?" 好吧, 我来试一下。
这篇文章就是我尝试的结果。我要用熟悉的直观的方法来解释Lisp, 我希望有勇气的人读
完它, 拿杯饮料, 深呼吸一下, 准备被搞得晕头转向。来吧, 愿你获得大能。

重新审视XML

千里之行始于足下。让我们的第一步从XML开始。可是XML已经说得更多的了, 还能有什么
新意思可说呢? 有的。XML自身虽然谈谈不上有趣, 但是XML和Lisp的关系却相当有趣。
XML和Lisp的概念有着惊人的相似之处。XML是我们通向理解Lisp的桥梁。好吧, 我们且把
XML当作活马医。让我们拿好手杖, 对XML的无人涉及的荒原地带作一番探险。我们要从一
个全新的视角来考察这个题目。

表面上看, XML是一种标准化语法, 它以适合人阅读的格式来表达任意的层次化数据
(hirearchical data)。象任务表(to-do list), 网页, 病历, 汽车保险单, 配置文件等
等, 都是XML用武的地方。比如我们拿任务表做例子:

<todo name="housework">
    <item priority="high">Clean the house.</item>
    <item priority="medium">Wash the dishes.</item>
    <item priority="medium">Buy more soap.</item>
</todo>

解析这段数据时会发生什么情况? 解析之后的数据在内存中怎样表示? 显然, 用树来表示
这种层次化数据是很恰当的。说到底, XML这种比较容易阅读的数据格式, 就是树型结构
数据经过序列化之后的结果。任何可以用树来表示的数据, 同样可以用XML来表示, 反之
亦然。希望你能懂得这一点, 这对下面的内容极其重要。

再进一步。还有什么类型的数据也常用树来表示? 无疑列表(list)也是一种。上过编译课
吧? 还模模糊糊记得一点吧? 源代码在解析之后也是用树结构来存放的, 任何编译程序都
会把源代码解析成一棵抽象语法树, 这样的表示法很恰当, 因为源代码就是层次结构的:
函数包含参数和代码块, 代码快包含表达式和语句, 语句包含变量和运算符等等。

我们已经知道, 任何树结构都可以轻而易举的写成XML, 而任何代码都会解析成树, 因此,
任何代码都可以转换成XML, 对不对? 我举个例子, 请看下面的函数:

int add(int arg1, int arg2)
{
    return arg1+arg2;
}

能把这个函数变成对等的XML格式吗? 当然可以。我们可以用很多种方式做到, 下面是其
中的一种, 十分简单:

<define-function return-type="int" name="add">
    <arguments>
        <argument type="int">arg1</argument>
        <argument type="int">arg2</argument>
    </arguments>
    <body>
        <return>
            <add value1="arg1" value2="arg2" />
        </return>
    </body>
</define>

这个例子非常简单, 用哪种语言来做都不会有太大问题。我们可以把任何程序码转成XML,
也可以把XML转回到原来的程序码。我们可以写一个转换器, 把Java代码转成XML, 另一个
转换器把XML转回到Java。一样的道理, 这种手段也可以用来对付C++(这样做跟发疯差不
多么。可是的确有人在做, 看看GCC-XML(http://www.gccxml.org)就知道了)。进一步说,
凡是有相同语言特性而语法不同的语言, 都可以把XML当作中介来互相转换代码。实际上
几乎所有的主流语言都在一定程度上满足这个条件。我们可以把XML作为一种中间表示法,
在两种语言之间互相译码。比方说, 我们可以用Java2XML把Java代码转换成XML, 然后用
XML2CPP再把XML转换成C++代码, 运气好的话, 就是说, 如果我们小心避免使用那些C++不
具备的Java特性的话, 我们可以得到完好的C++程序。这办法怎么样, 漂亮吧?

这一切充分说明, 我们可以把XML作为源代码的通用存储方式, 其实我们能够产生一整套
使用统一语法的程序语言, 也能写出转换器, 把已有代码转换成XML格式。如果真的采纳
这种办法, 各种语言的编译器就用不着自己写语法解析了, 它们可以直接用XML的语法解
析来直接生成抽象语法树。

说到这里你该问了, 我们研究了这半天XML, 这和Lisp有什么关系呢? 毕竟XML出来之时,
Lisp早已经问世三十年了。这里我可以保证, 你马上就会明白。不过在继续解释之前, 我
们先做一个小小的思维练习。看一下上面这个XML版本的add函数例子, 你怎样给它分类,
是代码还是数据? 不用太多考虑都能明白, 把它分到哪一类都讲得通。它是XML, 它是标
准格式的数据。我们也知道, 它可以通过内存中的树结构来生成(GCC-XML做的就是这个事
情)。它保存在不可执行的文件中。我们可以把它解析成树节点, 然后做任意的转换。显
而易见, 它是数据。不过且慢, 虽然它语法有点陌生, 可它又确确实实是一个add函数,
对吧?  一旦经过解析, 它就可以拿给编译器编译执行。我们可以轻而易举写出这个XML
代码解释器, 并且直接运行它。或者我们也可以把它译成Java或C++代码, 然后再编译运
行。所以说, 它也是代码。

我们说到那里了? 不错, 我们已经发现了一个有趣的关键之点。过去被认为很难解的概念
已经非常直观非常简单的显现出来。代码也是数据, 并且从来都是如此。这听起来疯疯癫
癫的, 实际上却是必然之事。我许诺过会以一种全新的方式来解释Lisp, 我要重申我的许
诺。但是我们此刻还没有到预定的地方, 所以还是先继续上边的讨论。

刚才我说过, 我们可以非常简单地实现XML版的add函数解释器, 这听起来好像不过是说说
而已。谁真的会动手做一下呢? 未必有多少人会认真对待这件事。随便说说, 并不打算真
的去做, 这样的事情你在生活中恐怕也遇到吧。你明白我这样说的意思吧, 我说的有没有
打动你? 有哇, 那好, 我们继续。

重新审视Ant

我们现在已经来到了月亮背光的那一面, 先别忙着离开。再探索一下, 看看我们还能发现
什么东西。闭上眼睛, 想一想2000年冬天的那个雨夜, 一个名叫James Duncan Davidson
的杰出的程序员正在研究Tomcat的servlet容器。那时, 他正小心地保存好刚修改过的文
件, 然后执行make。结果冒出了一大堆错误, 显然有什么东西搞错了。经过仔细检查, 他
想, 难道是因为tab前面加了个空格而导致命令不能执行吗? 确实如此。老是这样, 他真
的受够了。乌云背后的月亮给了他启示, 他创建了一个新的Java项目, 然后写了一个简单
但是十分有用的工具, 这个工具巧妙地利用了Java属性文件中的信息来构造工程, 现在
James可以写makefile的替代品, 它能起到相同的作用, 而形式更加优美, 也不用担心有
makefile那样可恨的空格问题。这个工具能够自动解释属性文件, 然后采取正确的动作来
编译工程。真是简单而优美。

(作者注: 我不认识James, James也不认识我, 这个故事是根据网上关于Ant历史的帖子
虚构的)

使用Ant构造Tomcat之后几个月, 他越来越感到Java的属性文件不足以表达复杂的构造指
令。文件需要检出, 拷贝, 编译, 发到另外一台机器, 进行单元测试。要是出错, 就发邮
件给相关人员, 要是成功, 就继续在尽可能高层的卷(volumn)上执行构造。追踪到最后,
卷要回复到最初的水平上。确实, Java的属性文件不够用了, James需要更有弹性的解决
方案。他不想自己写解析器(因为他更希望有一个具有工业标准的方案)。XML看起来是个
不错的选择。他花了几天工夫把Ant移植到XML,于是,一件伟大的工具诞生了。

Ant是怎样工作的?原理非常简单。Ant把包含有构造命令的XML文件(算代码还是算数据,
你自己想吧),交给一个Java程序来解析每一个元素,实际情况比我说的还要简单得多。
一个简单的XML指令会导致具有相同名字的Java类装入,并执行其代码。

    <copy todir="../new/dir">
        <fileset dir="src_dir" />
    </copy>

这段文字的含义是把源目录复制到目标目录,Ant会找到一个"copy"任务(实际上就是一个
Java类), 通过调用Java的方法来设置适当参数(todir和fileset),然后执行这个任务。
Ant带有一组核心类, 可以由用户任意扩展, 只要遵守若干约定就可以。Ant找到这些类,
每当遇到XML元素有同样的名字, 就执行相应的代码。过程非常简单。Ant做到了我们前面
所说的东西: 它是一个语言解释器, 以XML作为语法, 把XML元素转译为适当的Java指令。
我们可以写一个"add"任务, 然后, 当发现XML中有add描述的时候, 就执行这个add任务。
由于Ant是非常流行的项目, 前面展示的策略就显得更为明智。毕竟, 这个工具每天差不
多有几千家公司在使用。

到目前为之, 我还没有说Ant在解析XML时所遇到困难。你也不用麻烦去它的网站上去找答
案了, 不会找到有价值的东西。至少对我们这个论题来说是如此。我们还是继续下一步讨
论吧。我们答案就在那里。

为什么是XML

有时候正确的决策并非完全出于深思熟虑。我不知道James选择XML是否出于深思熟虑。也
许仅仅是个下意识的决定。至少从James在Ant网站上发表的文章看起来, 他所说的理由完
全是似是而非。他的主要理由是移植性和扩展性, 在Ant案例上, 我看不出这两条有什么
帮助。使用XML而不是Java代码, 到底有什么好处? 为什么不写一组Java类, 提供api来满
足基本任务(拷贝目录, 编译等等), 然后在Java里直接调用这些代码? 这样做仍然可以保
证移植性, 扩展性也是毫无疑问的。而且语法也更为熟悉, 看着顺眼。那为什么要用 XML
呢? 有什么更好的理由吗?

有的。虽然我不确定James是否确实意识到了。在语义的可构造性方面, XML的弹性是Java
望尘莫及的。我不想用高深莫测的名词来吓唬你, 其中的道理相当简单, 解释起来并不费
很多功夫。好, 做好预备动作, 我们马上就要朝向顿悟的时刻做奋力一跃。

上面的那个copy的例子, 用Java代码怎样实现呢? 我们可以这样做:

    CopyTask copy = new CopyTask();
    Fileset fileset = new Fileset();

    fileset.setDir("src_dir");
    copy.setToDir("../new/dir");
    copy.setFileset(fileset);

    copy.excute();

这个代码看起来和XML的那个很相似, 只是稍微长一点。差别在那里? 差别在于XML构造了
一个特殊的copy动词, 如果我们硬要用Java来写的话, 应该是这个样子:

    copy("../new/dir");
    {
        fileset("src_dir");
    }

看到差别了吗? 以上代码(如果可以在Java中用的化), 是一个特殊的copy算符, 有点像
for循环或者Java5中的foreach循环。如果我们有一个转换器, 可以把XML转换到Java, 大
概就会得到上面这段事实上不可以执行的代码。因为Java的技术规范是定死的, 我们没有
办法在程序里改变它。我们可以增加包, 增加类, 增加方法, 但是我们没办法增加算符,
而对于XML, 我们显然可以任由自己增加这样的东西。对于XML的语法树来说, 只要原意,
我们可以任意增加任何元素, 因此等于我们可以任意增加算符。如果你还不太明白的话,
看下面这个例子, 加入我们要给Java引入一个unless算符:

    unless(someObject.canFly())
    {
        someObject.transportByGround():
    }

在上面的两个例子中, 我们打算给Java语法扩展两个算符, 成组拷贝文件算符和条件算符
unless, 我们要想做到这一点, 就必须修改Java编译器能够接受的抽象语法树, 显然我们
无法用Java标准的功能来实现它。但是在XML中我们可以轻而易举地做到。我们的解析器
根据 XML元素, 生成抽象语法树, 由此生成算符, 所以, 我们可以任意引入任何算符。

对于复杂的算符来说, 这样做的好处显而易见。比如, 用特定的算符来做检出源码, 编译
文件, 单元测试, 发送邮件等任务, 想想看有多么美妙。对于特定的题目, 比如说构造软
件项目, 这些算符的使用可以大幅减低少代码的数量。增加代码的清晰程度和可重用性。
解释性的XML可以很容易的达到这个目标。XML是存储层次化数据的简单数据文件, 而在
Java中, 由于层次结构是定死的(你很快就会看到, Lisp的情况与此截然不同), 我们就没
法达到上述目标。也许这正是Ant的成功之处呢。

你可以注意一下最近Java和C#的变化(尤其是C#3.0的技术规范), C#把常用的功能抽象出
来, 作为算符增加到C#中。C#新增加的query算符就是一个例子。它用的还是传统的作法:
C#的设计者修改抽象语法树, 然后增加对应的实现。如果程序员自己也能修改抽象语法树
该有多好! 那样我们就可以构造用于特定问题的子语言(比如说就像Ant这种用于构造项目
的语言), 你能想到别的例子吗? 再思考一下这个概念。不过也不必思考太甚, 我们待会
还会回到这个题目。那时候就会更加清晰。

离Lisp越来越近

我们先把算符的事情放一放, 考虑一下Ant设计局限之外的东西。我早先说过, Ant可以通
过写Java类来扩展。Ant解析器会根据名字来匹配XML元素和Java类, 一旦找到匹配, 就执
行相应任务。为什么不用Ant自己来扩展Ant呢? 毕竟核心任务要包含很多传统语言的结构
(例如"if"), 如果Ant自身就能提供构造任务的能力(而不是依赖java类), 我们就可以得
到更高的移植性。我们将会依赖一组核心任务(如果你原意, 也不妨把它称作标准库), 而
不用管有没有Java 环境了。这组核心任务可以用任何方式来实现, 而其他任务建筑在这
组核心任务之上, 那样的话, Ant就会成为通用的, 可扩展的, 基于XML的编程语言。考虑
下面这种代码的可能性:

    <task name="Test">
        <echo message="Hello World" />
    </task>
    <Test />

如果XML支持"task"的创建, 上面这段代码就会输出"Hello World!". 实际上, 我们可以
用Java写个"task"任务, 然后用Ant-XML来扩展它。Ant可以在简单原语的基础上写出更复
杂的原语, 就像其他编程语言常用的作法一样。这也就是我们一开始提到的基于XML的编
程语言。这样做用处不大(你知道为甚么吗?), 但是真的很酷。

再看一回我们刚才说的Task任务。祝贺你呀, 你在看Lisp代码!!! 我说什么? 一点都不像
Lisp吗? 没关系, 我们再给它收拾一下。

比XML更好

前面一节说过, Ant自我扩展没什么大用, 原因在于XML很烦琐。对于数据来说, 这个问题
还不太大, 但如果代码很烦琐的话, 光是打字上的麻烦就足以抵消它的好处。你写过Ant
的脚本吗? 我写过, 当脚本达到一定复杂度的时候, XML非常让人厌烦。想想看吧, 为了
写结束标签, 每个词都得打两遍, 不发疯算好的!

为了解决这个问题, 我们应当简化写法。须知, XML仅仅是一种表达层次化数据的方式。
我们并不是一定要使用尖括号才能得到树的序列化结果。我们完全可以采用其他的格式。
其中的一种(刚好就是Lisp所采用的)格式, 叫做s表达式。s表达式要做的和XML一样, 但
它的好处是写法更简单, 简单的写法更适合代码输入。后面我会详细讲s表达式。这之前
我要清理一下XML的东西。考虑一下关于拷贝文件的例子:

    <copy toDir="../new/dir">
        <fileset dir="src_dir">
    </copy>

想想看在内存里面, 这段代码的解析树在内存会是什么样子? 会有一个"copy"节点, 其下
有一个 "fileset"节点, 但是属性在哪里呢? 它怎样表达呢? 如果你以前用过XML, 并且
弄不清楚该用元素还是该用属性, 你不用感到孤单, 别人一样糊涂着呢。没人真的搞得清
楚。这个选择与其说是基于技术的理由, 还不如说是闭着眼瞎摸。从概念上来讲, 属性也
是一种元素, 任何属性能做的, 元素一样做得到。XML引入属性的理由, 其实就是为了让
XML写法不那么冗长。比如我们看个例子:

    <copy>
        <toDir>../new/dir</toDir>
        <fileset>
            <dir>src_dir</dir>
        </fileset>
    </copy>

两下比较, 内容的信息量完全一样, 用属性可以减少打字数量。如果XML没有属性的话,
光是打字就够把人搞疯掉。

说完了属性的问题, 我们再来看一看s表达式。之所以绕这么个弯, 是因为s表达式没有属
性的概念。因为s表达式非常简练, 根本没有必要引入属性。我们在把XML转换成s表达式
的时候, 心里应该记住这一点。看个例子, 上面的代码译成s表达式是这样的:

    (copy
        (todir "../new/dir")
        (fileset (dir "src_dir")))

仔细看看这个例子, 差别在哪里? 尖括号改成了圆括号, 每个元素原来是有一对括号标记
包围的, 现在取消了后一个(就是带斜杠的那个)括号标记。表示元素的结束只需要一个")"
就可以了。不错, 差别就是这些。这两种表达方式的转换, 非常自然, 也非常简单。s表
达式打起字来, 也省事得多。第一次看s表达式(Lisp)时, 括号很烦人是吧? 现在我们明
白了背后的道理, 一下子就变得容易多了。至少, 比XML要好的多。用s表达式写代码, 不
单是实用, 而且也很让人愉快。s表达式具有XML的一切好处, 这些好处是我们刚刚探讨过
的。现在我们看看更加Lisp风格的task例子:

    (task (name "Test")
        (echo (message "Hellow World!")))
    (Test)

用Lisp的行话来讲, s表达式称为表(list)。对于上面的例子, 如果我们写的时候不加换
行, 用逗号来代替空格, 那么这个表达式看起来就非常像一个元素列表, 其中又嵌套着其
他标记。

    (task, (name, "test"), (echo, (message, "Hello World!")))

XML自然也可以用这样的风格来写。当然上面这句并不是一般意义上的元素表。它实际上
是一个树。这和XML的作用是一样的。称它为列表, 希望你不会感到迷惑, 因为嵌套表和
树实际上是一码事。Lisp的字面意思就是表处理(list processing), 其实也可以称为树
处理, 这和处理XML节点没有什么不同。

经受这一番折磨以后, 现在我们终于相当接近Lisp了, Lisp的括号的神秘本质(就像许多
Lisp狂热分子认为的)逐渐显现出来。现在我们继续研究其他内容。

重新审视C语言的宏

到了这里, 对XML的讨论你大概都听累了, 我都讲累了。我们先停一停, 把树, s表达式,
Ant这些东西先放一放, 我们来说说C的预处理器。一定有人问了, 我们的话题和C有什么
关系? 我们已经知道了很多关于元编程的事情, 也探讨过专门写代码的代码。理解这问题
有一定难度, 因为相关讨论文章所使用的编程语言, 都是你们不熟悉的。但是如果只论概
念的话, 就相对要简单一些。我相信, 如果以C语言做例子来讨论元编程, 理解起来一定
会容易得多。好, 我们接着看。

一个问题是, 为什么要用代码来写代码呢? 在实际的编程中, 怎样做到这一点呢? 到底元
编程是什么意思? 你大概已经听说过这些问题的答案, 但是并不懂得其中缘由。为了揭示
背后的真理, 我们来看一下一个简单的数据库查询问题。这种题目我们都做过。比方说,
直接在程序码里到处写SQL语句来修改表(table)里的数据, 写多了就非常烦人。即便用
C#3.0的LINQ, 仍然不减其痛苦。写一个完整的SQL查询(尽管语法很优美)来修改某人的地
址, 或者查找某人的名字, 绝对是件令程序员倍感乏味的事情, 那么我们该怎样来解决这
个问题? 答案就是: 使用数据访问层。

概念挺简单, 其要点是把数据访问的内容(至少是那些比较琐碎的部分)抽象出来, 用类来
映射数据库的表, 然后用访问对象属性访问器(accessor)的办法来间接实现查询。这样就
极大地简化了开发工作量。我们用访问对象的方法(或者属性赋值, 这要视你选用的语言
而定)来代替写SQL查询语句。凡是用过这种方法的人, 都知道这很节省时间。当然, 如果
你要亲自写这样一个抽象层, 那可是要花非常多的时间的--你要写一组类来映射表, 把属
性访问转换为SQL查询, 这个活相当耗费精力。用手工来做显然是很不明智的。但是一旦
你有了方案和模板, 实际上就没有多少东西需要思考的。你只需要按照同样的模板一次又
一次重复编写相似代码就可以了。事实上很多人已经发现了更好的方法, 有一些工具可以
帮助你连接数据库, 抓取数据库结构定义(schema), 按照预定义的或者用户定制的模板来
自动编写代码。

如果你用过这种工具, 你肯定会对它的神奇效果深为折服。往往只需要鼠标点击数次, 就
可以连接到数据库, 产生数据访问源码, 然后把文件加入到你的工程里面, 十几分钟的工
作, 按照往常手工方式来作的话, 也许需要数百个小时人工(man-hours)才能完成。可是,
如果你的数据库结构定义后来改变了怎么办? 那样的话, 你只需把这个过程重复一遍就可
以了。甚至有一些工具能自动完成这项变动工作。你只要把它作为工程构造的一部分, 每
次编译工程的时候, 数据库部分也会自动地重新构造。这真的太棒了。你要做的事情基本
上减到了0。如果数据库结构定义发生了改变, 并在编译时自动更新了数据访问层的代码,
那么程序中任何使用过时的旧代码的地方, 都会引发编译错误。

数据访问层是个很好的例子, 这样的例子还有好多。从GUI样板代码, WEB代码, COM和
CORBA存根, 以及MFC和ATL等等。在这些地方, 都是有好多相似代码多次重复。既然这些
代码有可能自动编写, 而程序员时间又远远比CPU时间昂贵, 当然就产生了好多工具来自
动生成样板代码。这些工具的本质是什么呢? 它们实际上就是制造程序的程序。它们有一
个神秘的名字, 叫做元编程。所谓元编程的本义, 就是如此。

元编程本来可以用到无数多的地方, 但实际上使用的次数却没有那么多。归根结底, 我们
心里还是在盘算, 假设重复代码用拷贝粘贴的话, 大概要重复6,7次, 对于这样的工作量,
值得专门建立一套生成工具吗? 当然不值得。数据访问层和COM存根往往需要重用数百次,
甚至上千次, 所以用工具生成是最好的办法。而那些仅仅是重复几次十几次的代码, 是没
有必要专门做工具的。不必要的时候也去开发代码生成工具, 那就显然过度估计了代码生
成的好处。当然, 如果创建这类工具足够简单的话, 还是应当尽量多用, 因为这样做必然
会节省时间。现在来看一下有没有合理的办法来达到这个目的。

现在, C预处理器要派上用场了。我们都用过C/C++的预处理器, 我们用它执行简单的编译
指令, 来产生简单的代码变换(比方说, 设置调试代码开关), 看一个例子:

    #define triple(X) X+X+X

这一行的作用是什么? 这是一个简单的预编译指令, 它把程序中的triple(X)替换称为
X+X+X。例如, 把所有的triple(5)都换成5+5+5, 然后再交给编译器编译。这就是一个简
单的代码生成的例子。要是C的预处理器再强大一点, 要是能够允许连接数据库, 要是能
多一些其他简单的机制, 我们就可以在我们程序的内部开发自己的数据访问层。下面这个
例子, 是一个假想的对C宏的扩展:

    #get-db-schema("127.0.0.1")
    #iterate-through-tables
    #for-each-table
        class #table-name
            {
            };
    #end-for-each

我们连接数据库结构定义, 遍历数据表, 然后对每个表创建一个类, 只消几行代码就完成
了这个工作。这样每次编译工程的时候, 这些类都会根据数据库的定义同步更新。显而易
见, 我们不费吹灰之力就在程序内部建立了一个完整的数据访问层, 根本用不着任何外部
工具。当然这种作法有一个缺点, 那就是我们得学习一套新的"编译时语言", 另一个缺点
就是根本不存在这么一个高级版的C预处理器。需要做复杂代码生成的时候, 这个语言(译
者注: 这里指预处理指令, 即作者所说的"编译时语言")本身也一定会变得相当复杂。它
必须支持足够多的库和语言结构。比如说我们想要生成的代码要依赖某些ftp服务器上的
文件, 预处理器就得支持ftp访问, 仅仅因为这个任务而不得不创造和学习一门新的语言,
真是有点让人恶心(事实上已经存在着有此能力的语言, 这样做就更显荒谬)。我们不妨再
灵活一点, 为什么不直接用 C/C++自己作为自己的预处理语言呢?  这样子的话, 我们可
以发挥语言的强大能力, 要学的新东西也只不过是几个简单的指示字 , 这些指示字用来
区别编译时代码和运行时代码。

    <%
        cout<<"Enter a number: ";
        cin>>n;
    %>
    for(int i=0;i< <% n %>;i++)
    {
        cout<<"hello"<<endl;
    }

你明白了吗? 在<%和%>标记之间的代码是在编译时运行的, 标记之外的其他代码都是普通
代码。编译程序时, 系统会提示你输入一个数, 这个数在后面的循环中会用到。而for循
环的代码会被编译。假定你在编译时输入5, for循环的代码将会是:

    for(int i=0;i<5; i++)
    {
        cout<<"hello"<<endl;
    }

又简单又有效率, 也不需要另外的预处理语言。我们可以在编译时就充分发挥宿主语言(
此处是C/C++)的强大能力, 我们可以很容易地在编译时连接数据库, 建立数据访问层, 就
像JSP或者ASP创建网页那样。我们也用不着专门的窗口工具来另外建立工程。我们可以在
代码中立即加入必要的工具。我们也用不着顾虑建立这种工具是不是值得, 因为这太容易
了, 太简单了。这样子不知可以节省多少时间啊。

你好, Lisp

到此刻为止, 我们所知的关于Lisp的指示可以总结为一句话: Lisp是一个可执行的语法更
优美的XML, 但我们还没有说Lisp是怎样做到这一点的, 现在开始补上这个话题。

Lisp有丰富的内置数据类型, 其中的整数和字符串和其他语言没什么分别。像71或者
"hello"这样的值, 含义也和C++或者Java这样的语言大体相同。真正有意思的三种类型是
符号(symbol), 表和函数。这一章的剩余部分, 我都会用来介绍这几种类型, 还要介绍
Lisp环境是怎样编译和运行源码的。这个过程用Lisp的术语来说通常叫做求值。通读这一
节内容, 对于透彻理解元编程的真正潜力, 以及代码和数据的同一性, 和面向领域语言的
观念, 都极其重要。万勿等闲视之。我会尽量讲得生动有趣一些, 也希望你能获得一些
启发。那好, 我们先讲符号。

大体上, 符号相当于C++或Java语言中的标志符, 它的名字可以用来访问变量值(例如
currentTime, arrayCount, n, 等等), 差别在于, Lisp中的符号更加基本。在C++或
Java里面, 变量名只能用字母和下划线的组合, 而Lisp的符号则非常有包容性, 比如, 加
号(+)就是一个合法的符号, 其他的像-, =, hello-world, *等等都可以是符号名。符号
名的命名规则可以在网上查到。你可以给这些符号任意赋值, 我们这里先用伪码来说明这
一点。假定函数set是给变量赋值(就像等号=在C++和Java里的作用), 下面是我们的例子:

    set(test, 5)            // 符号test的值为5
    set(=, 5)               // 符号=的值为5
    set(test, "hello")      // 符号test的值为字符串"hello"
    set(test, =)            // 此时符号=的值为5, 所以test的也为5
    set(*, "hello")         // 符号*的值为"hello"

好像有什么不对的地方? 假定我们对*赋给整数或者字符串值, 那做乘法时怎么办? 不管
怎么说, *总是乘法呀? 答案简单极了。Lisp中函数的角色十分特殊, 函数也是一种数据
类型, 就像整数和字符串一样, 因此可以把它赋值给符号。乘法函数Lisp的内置函数, 默
认赋给*, 你可以把其他函数赋值给*, 那样*就不代表乘法了。你也可以把这函数的值存
到另外的变量里。我们再用伪码来说明一下:

    *(3,4)          // 3乘4, 结果是12
    set(temp, *)    // 把*的值, 也就是乘法函数, 赋值给temp
    set(*, 3)       // 把3赋予*
    *(3,4)          // 错误的表达式, *不再是乘法, 而是数值3
    temp(3,4)       // temp是乘法函数, 所以此表达式的值为3乘4等于12
    set(*, temp)    // 再次把乘法函数赋予*
    *(3,4)          // 3乘4等于12

再古怪一点, 把减号的值赋给加号:

    set(+, -)       // 减号(-)是内置的减法函数
    +(5, 4)         // 加号(+)现在是代表减法函数, 结果是5减4等于1

这只是举例子, 我还没有详细讲函数。Lisp中的函数是一种数据类型, 和整数, 字符串,
符号等等一样。一个函数并不必然有一个名字, 这和C++或者Java语言的情形很不相同。
在这里函数自己代表自己。事实上它是一个指向代码块的指针, 附带有一些其他信息(例
如一组参数变量)。只有在把函数赋予其他符号时, 它才具有了名字, 就像把一个数值或
字符串赋予变量一样的道理。你可以用一个内置的专门用于创建函数的函数来创建函数,
然后把它赋值给符号fn, 用伪码来表示就是:

    fn [a]
    {
        return *(a, 2);
    }

这段代码返回一个具有一个参数的函数, 函数的功能是计算参数乘2的结果。这个函数还
没有名字, 你可以把此函数赋值给别的符号:

    set(times-two, fn [a] {return *(a, 2)})

我们现在可以这样调用这个函数:

    time-two(5)         // 返回10

我们先跳过符号和函数, 讲一讲表。什么是表? 你也许已经听过好多相关的说法。表, 一
言以蔽之, 就是把类似XML那样的数据块, 用s表达式来表示。表用一对括号括住, 表中元
素以空格分隔, 表可以嵌套。例如(这回我们用真正的Lisp语法, 注意用分号表示注释):

    ()                      ; 空表
    (1)                     ; 含一个元素的表
    (1 "test")              ; 两元素表, 一个元素是整数1, 另一个是字符串
    (test "hello")          ; 两元素表, 一个元素是符号, 另一个是字符串
    (test (1 2) "hello")    ; 三元素表, 一个符号test, 一个含有两个元素1和2的
                            ; 表, 最后一个元素是字符串

当Lisp系统遇到这样的表时, 它所做的, 和Ant处理XML数据所做的, 非常相似, 那就是试
图执行它们。其实, Lisp源码就是特定的一种表, 好比Ant源码是一种特定的XML一样。
Lisp执行表的顺序是这样的, 表的第一个元素当作函数, 其他元素当作函数的参数。如果
其中某个参数也是表, 那就按照同样的原则对这个表求值, 结果再传递给最初的函数作为
参数。这就是基本原则。我们看一下真正的代码:

    (* 3 4)                 ; 相当于前面列举过的伪码*(3,4), 即计算3乘4
    (times-two 5)           ; 返回10, times-two按照前面的定义是求参数的2倍
    (3 4)                   ; 错误, 3不是函数
    (time-two)              ; 错误, times-two要求一个参数
    (times-two 3 4)         ; 错误, times-two只要求一个参数
    (set + -)               ; 把减法函数赋予符号+
    (+ 5 4)                 ; 依据上一句的结果, 此时+表示减法, 所以返回1
    (* 3 (+ 2 2))           ; 2+2的结果是4, 再乘3, 结果是12

上述的例子中, 所有的表都是当作代码来处理的。怎样把表当作数据来处理呢? 同样的,
设想一下, Ant是把XML数据当作自己的参数。在Lisp中, 我们给表加一个前缀'来表示数
据。

    (set test '(1 2))       ; test的值为两元素表
    (set test (1 2))        ; 错误, 1不是函数
    (set test '(* 3 4))     ; test的值是三元素表, 三个元素分别是*, 3, 4

我们可以用一个内置的函数head来返回表的第一个元素, tail函数来返回剩余元素组成的
表。

    (head '(* 3 4))         ; 返回符号*
    (tail '(* 3 4))         ; 返回表(3 4)
    (head (tal '(* 3 4)))   ; 返回3
    (head test)             ; 返回*

你可以把Lisp的内置函数想像成Ant的任务。差别在于, 我们不用在另外的语言中扩展
Lisp(虽然完全可以做得到), 我们可以用Lisp自己来扩展自己, 就像上面举的times-two
函数的例子。Lisp的内置函数集十分精简, 只包含了十分必要的部分。剩下的函数都是作
为标准库来实现的。

Lisp宏

我们已经看到, 元编程在一个类似jsp的模板引擎方面的应用。我们通过简单的字符串处
理来生成代码。但是我们可以做的更好。我们先提一个问题, 怎样写一个工具, 通过查找
目录结构中的源文件来自动生成Ant脚本。

用字符串处理的方式生成Ant脚本是一种简单的方式。当然, 还有一种更加抽象, 表达能
力更强, 扩展性更好的方式, 就是利用XML库在内存中直接生成XML节点, 这样的话内存中
的节点就可以自动序列化成为字符串。不仅如此, 我们的工具还可以分析这些节点, 对已
有的XML文件做变换。通过直接处理XML节点。我们可以超越字符串处理, 使用更高层次的
概念, 因此我们的工作就会做的更快更好。

我们当然可以直接用Ant自身来处理XML变换和制作代码生成工具。或者我们也可以用Lisp
来做这项工作。正像我们以前所知的, 表是Lisp内置的数据结构, Lisp含有大量的工具来
快速有效的操作表(head和tail是最简单的两个)。而且, Lisp没有语义约束, 你可以构造
任何数据结构, 只要你原意。

Lisp通过宏(macro)来做元编程。我们写一组宏来把任务列表(to-do list)转换为专用领
域语言。

回想一下上面to-do list的例子, 其XML的数据格式是这样的:

    <todo name = "housework">
        <item priority = "high">Clean the hose</item>
        <item priority = "medium">Wash the dishes</item>
        <item priority = "medium">Buy more soap</item>
    </todo>

相应的s表达式是这样的:

    (todo "housework"
        (item (priority high) "Clean the house")
        (item (priority medium) "Wash the dishes")
        (item (priority medium) "Buy more soap"))

假设我们要写一个任务表的管理程序, 把任务表数据存到一组文件里, 当程序启动时, 从
文件读取这些数据并显示给用户。在别的语言里(比如说Java), 这个任务该怎么做? 我们
会解析XML文件, 从中得出任务表数据, 然后写代码遍历XML树, 再转换为Java的数据结构
(老实讲, 在Java里解析XML真不是件轻松的事情), 最后再把数据展示给用户。现在如果
用Lisp, 该怎么做?

假定要用同样思路的化, 我们大概会用Lisp库来解析XML。XML对我们来说就是一个Lisp
的表(s表达式), 我们可以遍历这个表, 然后把相关数据提交给用户。可是, 既然我们用
Lisp, 就根本没有必要再用XML格式保存数据, 直接用s表达式就好了, 这样就没有必要做
转换了。我们也用不着专门的解析库, Lisp可以直接在内存里处理s表达式。注意, Lisp
编译器和.net编译器一样, 对Lisp程序来说, 在运行时总是随时可用的。

但是还有更好的办法。我们甚至不用写表达式来存储数据, 我们可以写宏, 把数据当作代
码来处理。那该怎么做呢? 真的简单。回想一下, Lisp的函数调用格式:

    (function-name arg1 arg2 arg3)

其中每个参数都是s表达式, 求值以后, 传递给函数。如果我们用(+ 4 5)来代替arg1,
那么, 程序会先求出结果, 就是9, 然后把9传递给函数。宏的工作方式和函数类似。主要
的差别是, 宏的参数在代入时不求值。

    (macro-name (+ 4 5))

这里, (+ 4 5)作为一个表传递给宏, 然后宏就可以任意处理这个表, 当然也可以对它求
值。宏的返回值是一个表, 然后有程序作为代码来执行。宏所占的位置, 就被替换为这个
结果代码。我们可以定义一个宏把数据替换为任意代码, 比方说, 替换为显示数据给用户
的代码。

这和元编程, 以及我们要做的任务表程序有什么关系呢? 实际上, 编译器会替我们工作,
调用相应的宏。我们所要做的, 仅仅是创建一个把数据转换为适当代码的宏。

例如, 上面曾经将过的C的求三次方的宏, 用Lisp来写是这样子:

    (defmacro triple (x)
        `(+ ~x ~x ~x))

(译注: 在Common Lisp中, 此处的单引号应当是反单引号, 意思是对表不求值, 但可以对
表中某元素求值, 记号~表示对元素x求值, 这个求值记号在Common Lisp中应当是逗号。
反单引号和单引号的区别是, 单引号标识的表, 其中的元素都不求值。这里作者所用的记
号是自己发明的一种Lisp方言Blaise, 和common lisp略有不同, 事实上, 发明方言是
lisp高手独有的乐趣, 很多狂热分子都热衷这样做。比如Paul Graham就发明了ARC, 许多
记号比传统的Lisp简洁得多, 显得比较现代)

单引号的用处是禁止对表求值。每次程序中出现triple的时候,

    (triple 4)

都会被替换成:

    (+ 4 4 4)

我们可以为任务表程序写一个宏, 把任务数据转换为可执行码, 然后执行。假定我们的输
出是在控制台:

    (defmacro item (priority note)
        `(block
            (print stdout tab "Prority: " ~(head (tail priority)) endl)
            (print stdout tab "Note: " ~note endl endl)))

我们创造了一个非常小的有限的语言来管理嵌在Lisp中的任务表。这个语言只用来解决特
定领域的问题, 通常称之为DSLs(特定领域语言, 或专用领域语言)。

特定领域语言

本文谈到了两个特定领域语言, 一个是Ant, 处理软件构造。一个是没起名字的, 用于处
理任务表。两者的差别在于, Ant是用XML, XML解析器, 以及Java语言合在一起构造出来
的。而我们的迷你语言则完全内嵌在Lisp中, 只消几分钟就做出来了。

我们已经说过了DSL的好处, 这也就是Ant用XML而不直接用Java的原因。如果使用Lisp,
我们可以任意创建DSL, 只要我们需要。我们可以创建用于网站程序的DSL, 可以写多用户
游戏, 做固定收益贸易(fixed income trade), 解决蛋白质折叠问题, 处理事务问题, 等
等。我们可以把这些叠放在一起, 造出一个语言, 专门解决基于网络的贸易程序, 既有网
络语言的优势, 又有贸易语言的好处。每天我们都会收获这种方法带给我们的益处, 远远
超过Ant所能给予我们的。

用DSL解决问题, 做出的程序精简, 易于维护, 富有弹性。在Java里面, 我们可以用类来
处理问题。这两种方法的差别在于, Lisp使我们达到了一个更高层次的抽象, 我们不再受
语言解析器本身的限制, 比较一下用Java库直接写的构造脚本和用Ant写的构造脚本其间
的差别。同样的, 比较一下你以前所做的工作, 你就会明白Lisp带来的好处。

接下来

学习Lisp就像战争中争夺山头。尽管在电脑科学领域, Lisp已经算是一门古老的语言, 直
到现在仍然很少有人真的明白该怎样给初学者讲授Lisp。尽管Lisp老手们尽了很大努力,
今天新手学习Lisp仍然是困难重重。好在现在事情正在发生变化, Lisp的资源正在迅速增
加, 随着时间推移, Lisp将会越来越受关注。

Lisp使人超越平庸, 走到前沿。学会Lisp意味着你能找到更好的工作, 因为聪明的雇主会
被你与众不同的洞察力所打动。学会Lisp也可能意味着明天你可能会被解雇, 因为你总是
强调, 如果公司所有软件都用Lisp写, 公司将会如何卓越, 而这些话你的同事会听烦的。
Lisp值得努力学习吗? 那些已经学会Lisp的人都说值得, 当然, 这取决于你的判断。

你的看法呢?

这篇文章写写停停, 用了几个月才最终完成。如果你觉得有趣, 或者有什么问题, 意见或
建议, 请给我发邮件coffeemug@gmail.com, 我会很高兴收到你的反馈。

posted @ 2011-02-15 09:29 Vincent 阅读(792) | 评论 (3)编辑 收藏

互斥锁与条件变量的语义

互斥锁与条件变量的语义


互斥锁,我要对一块共享数据操作,但是我怕同时你也操作,那就乱套了,所以我要加锁,这个时候我就开始操作这块共享数据,而你进不了临界区,等我操作完了,把锁丢掉,你就可以拿到锁进去操作了

 

条件变量,我要看一块共享数据里某一个条件是否达成,我很关心这个,如果我用互斥锁,不停的进入临界区看条件是否达成,这简直太悲剧了,这样一来,我醒的时候会占CPU资源,但是却干不了什么时,只是频繁的看条件是否达成,而且这对别人来说也是一种损失,我每次加上锁,别人就进不了临界区干不了事了。好吧,轮询总是痛苦的,咱等别人通知吧,于是条件变量出现了,我依旧要拿个锁,进了临界区,看到了共享数据,发现,咦,条件还不到,于是我就调用pthread_cond_wait(),先把锁丢了,好让别人可以去对共享数据做操作,然后呢?然后我就睡了,直到特定的条件发生,别人修改完了共享数据,给我发了个消息,我又重新拿到了锁,继续干俺要干的事情了……

 

posted @ 2010-12-16 15:35 Vincent 阅读(827) | 评论 (0)编辑 收藏

线程内幕

一.
在主线程中调用
(1)pthread_create( &thread_a, NULL, thread_function, NULL);
(2)pthread_create( &thread_b, NULL, thread_function, NULL);
(3)pthread_create( &thread_c, NULL, thread_function, NULL);

 


在段2处,线程b可以认为线程a已经存在
但是在段2执行完以后,主线程并不知道线程a和线程b谁先执行,并不能在这里做线程a先于线程b执行的假设
因为线程的时间片分配在这里是未知的

 

二.
myglobal=myglobal+1;
myglobal是全局变量,多个线程同时在做累加的工作
是否应该为myglobal=myglobal+1;加锁呢?
肯定是应该加锁
首先我们并不知道myglobal=myglobal+1;又或是++ myglobal;能否被编译成一条汇编指令
就算如此++ myglobal被编译成了原子操作
但考虑到多核处理器,其原子操作可能在多CPU上同时处理
其结果仍然是不可预估的


以上内容转述自http://www.ibm.com/developerworks/cn/linux/thread/posix_thread2/index.html

posted @ 2010-12-16 14:37 Vincent 阅读(461) | 评论 (0)编辑 收藏

第4章

UNIX网络编程笔记

做下笔记,以供不时之需:)

4

 

 

socket(int family,               int type,                      int protocol);

非负描述字-成功,-1-出错

            协议族                   套接口类型                              协议类型常量值

            AF_INET  IPv4协议 SOCK_STREAM 字节流           IPPROTO_TCP  TCP传输协议

            AF_INET6 IPv6协议    SOCK_DGRAM  数据报              IPPROTO_UDP  UDP传输协议

           AF_LOCAL UNIX域协议  SOCK_SEQPACKET有序分组          IPPROTO_SCTP SCTP传输协议

            AF_ROUTE 路由套接口  SOCK_RAW    原始套接口

            AF_KEY   密钥套接口

 

 

 

protocol可以设为0,以选择所给定的familytype组合的系统缺省值

 

 

connect(int sockfd,           const struct sockaddr *servaddr,    socklen_t addrlen);

         要连接的套接口描述字         指向描述连接地址的套接口地址的结构指针     指向套接口地址的结构大小        

0-成功,-1-失败

 

 

ETIMEDOUT错误,客户端未收到SYN分节的响应

4.4BSD内核中SYN分节会在首次发出后的6秒,24秒后再发出SYN分节,如果75秒后仍无响应,返回错误(TCPv2 p828)

 

ECONNERFUSED错误,客户端收到RST分节时就返回错误

其中产生RST的三个条件是:

1.目的地为某端口的SYN到达,然而该端口上没有正在监听的服务器

2.TCP想取消一个已有连接

3.TCP接受到一个根本不存在的连接上的分节(TCPv1 246-250)

 

EHOSTUNREACHENETUNREACH错误

在发出SYN分节的中间某个路由器引发了目的地不可达的ICMP错误,客户主机保存该消息,但仍然继续发送SYN,直到75秒后,如果仍未有回应,则把错误消息返回给进程。

以下情况也会产生此类错误

1.本地系统的转发表,根本没有到达远地系统的路径

2.connect调用根本不等待就返回(非阻塞?)

 

:connect失败则该套接口不再可用,必须关闭。

 

 

bind(int sockfd,                  const struct sockaddr *myaddr,               socklen_t addrlen);

0-成功,-1失败

     要绑定的套接口描述字       指向描述要绑定的套接口地址的结构指针         指向套接口地址的结构大小

 

如果一个TCP客户端或服务器未曾调用bind捆绑一个端口,当调用connectlisten时,内核会为相应的套接口选择一个临时端口

进程可把特定IP地址捆绑到它的套接口上,这个特定IP必须是主机的网络接口之一。对于TCP客户,这就限定了套接口只接受目的地为这个特定IP的客户连接。

TCP客户通过不把IP捆绑到它的套接口上,内核会根据所用外出网络接口来选择源IP地址,而所用外出的接口则取决于到达服务器所需的路径。(TCPv2 p737)

如果TCP服务器没有把IP地址捆绑到它的套接口上,内核就把客户发送的SYN的宿IP地址作为服务器的源地址。(TCPv2 p943)

 

EADDRINUSE错误 地址已使用

 

 

 

listen(   int sockfd ,                         int backlog);

0-成功,-1失败

      要转换成被动的套接口     排队的最大已连接个数

 

 

1.未完成连接队列

处于SYN_RCVD状态的套接口队列

2.已完成连接队列

处于ESTABLISHED状态的套接口队列

 

在队列满时,服务器如果收到SYN分节,会忽略掉,因为队列满是暂时性的,忽略掉可以以期待客户端的再次连接。而如果返回RST分节,会时客户端放弃连接。

 

在三次握手完成之后,但在服务器调用accept之前到达的数据,应有服务器TCP排队,最大数据量为相应的已连接套接口的接受缓冲区大小。



Int accept(        int sockfd,                  struct sockaddr* cliaddr,                             socklen_t* addrlen);

非负描述字-成功,-1-失败

                            被动的监听套接口  对端的套接口地址的结构         对端的套接口地址的结构大小

 

 

Int close(int sockfd);

0-       成功,-1-失败

要关闭的套接口

 

缺省行为是修改套接口标记为已关闭,函数会立即返回,此时该套接口描述字已不能再由进程使用。而TCP将尝试发送已排队等待发送到对端的任何数据,发送完毕后开始正常的TCP连接终止序列。

 

SO_LINGER套接口选项可以改变此缺省行为。

posted @ 2010-12-16 11:39 Vincent 阅读(349) | 评论 (0)编辑 收藏

懂得

第一次周六周日在加班
第一次担起责任
第一次怕自己不行
第一次有那么一点理解到底什么是主程
这一天仅作纪念:)

posted @ 2010-12-12 21:55 Vincent 阅读(336) | 评论 (0)编辑 收藏

游戏服务端程序员群

群号:16043631 已经250人了 还差250
帮朋友宣传一下:)

posted @ 2010-10-19 16:35 Vincent 阅读(1808) | 评论 (0)编辑 收藏

[转]《深度探索C++对象模型》读书笔记[二]

2002-7-6

3.3 Data Member的存取
1.   不管什么情况,每一个static data member只有一个实体,放在程序的data segment之中,每次程序取用static member,不管是通过operator::还是member selection operator,都会被内部转化为对该唯一extern实体的直接参考操作。每一个static member的存取以及与class的关联不会导致任何执行时间或空间上的额外负担。如果有两个classes,每一个都声明了一个static member freeList,那么当它们都放在程序的data segment时,就会导致名称冲突,编译器的解决方法是使用name-mangling,暗中对每一个static data member编码,以获得一个独一无二的程序识别代码。

2.   有多少个编译器,就有多少种name-mangling做法,任何name-mangling做法都有两个要点:

ü          一种算法,推导出独一无二的名称;

ü          如果编译系统或者环境工具必须和使用者交谈,那些独一无二的名称可被轻易推导回原先的名称。

3.   取一个static data member的地址,会得到一个指向其数据类型的常量指针,而不是指向其class member的指针。

4.   nonstatic data members直接放在每一个class object之中,除非经过显示的explicit或隐含的implicit class object,没有办法直接存取它们。只要程序员在一个member function中直接处理一个nonstatic data member,所谓implicit class object就会发生,其实质是编译器会为这个member function增添一个const this指针,而在函数体内通过这个this指针来存取nontatic data member。

5.   欲对一个nonstatic data member进行存取操作,编译器需要把class object的起始地址加上data member的编译量offset,如地址&someObject.someMember等于&someobject + (&theClass::someMember – 1);指向data member的指针,其offset值总是会被加上1,这样可以使编译系统区分出一个指向class第一个data member的指针和一个没有指向任何data member的指针。

6.   每一个nonstatic data member的偏移量在编译时期即可获知,甚至如果member属于一个单一或多重继承体系中base class subobject也是一样,因此其存取效率和一个C struct member或一个nonderived class的member的存取效率是一样的。但是在虚拟继承的情况下就另当别论了:如果该nonstatic data member是一个virtual base class的member,并且通过指针来存取的话,在编译时期就不会得知这个member真正的offset位置,所以这个存取操作必须延迟至执行期,经由一个额外的间接导引才能够解决。

2002-7-7

3.4 “继承”与Data Member
1.   在C++继承模型中,一个derived class object所表现出来的东西,是其自己的members加上其base classes members的总和。C++并未规定derived class members和base classes members的排列次序。不过,在大部分编译器上,除virtual base class外,base class members总是先出现。

2.   一般而言,具体继承concrete inheritance并不会增加空间或存取时间上的额外负担。

3.   把两个原本独立不相干的classes凑成一对type/subtype,并带有继承关系容易犯两个错误。一是可能会重复设计一些相同操作的函数,一般而言,选择某些函数做成inline函数,是设计class的一个重要课题;二是把一个class分解为多层,有可能会为了表现class体系之抽象化,因为编译器的边界调整而膨胀所需空间。其根本原因是C++保证出现在derived class中的base class subobject有其完整原样性。

4.   C++最初问世时,许多编译器把vptr放在class object的尾端,这样可以保留base class C struct的对象布局。此后,某些编译器开始把vptr放在class object的开始处,这样会给多重继承下通过指向class members之指针调用virtual function带来一些帮助,否则,在执行期不仅必须备妥从class object起点处开始量起的offset,而且必须备妥class vptr之间的offset。

5.   单一继承提供了一种自然多态的形态,是关于class体系中base type和derived type之间的转换。一般来说,base class和derived class objects都是从相同的地址开始。但若将vptr放在class object的起始处,如果base class没有virtual function而derived class有,那么单一继承的自然多态就会打破。此时,把一个derived object转换为其base类型就需要编译器的介入,用以调整地址。而在既是多重继承又是虚拟继承的情况下,编译器的介入则更有必要。

6.   多重继承的复杂度在于derived class和其上一个base class乃至上上一个base class之间的非自然关系,其主要问题发生在derived class objects和其第二或后继的base class objects之间的转换。对一个多重派生对象,将其地址指定给最左端base class的指针,情况将和单一继承相同,而第二个或后继的base class的地址指定操作则需要修改地址,加上或减去(若是downcast)介于中间的base class subobjects的大小。C++并未要求多重继承时derived class object中各个base class subjectes的排列次序,目前各个编译器都是根据声明次序来排列它们。

7.   class内如果内含一个或多个virtual bass class subobjects,将被分割为两部分:一个不变局部和一个共享局部。不变局部总是拥有固定的offset,其数据用以指定共享局部的位置,可以直接存取;而共享局部表现的就是virtual base class subobject,其位置会因为每次的派生操作而变化,只可间接存取。各家编译器实现技术之间的差异就在于间接存取的方法不同。

8.   一般而言,virtual base class最有效的一种运用方式是:一个没有任何data member的抽象class。

2002-7-14

3.5 对象成员的效率
如果没有把优化开关打开,就很难猜测一个程序的效率表现,因为程序代码潜在性的受到某些与编译器有关的东西的影响。程序员如果关心效率,应该实际测试,不要光凭推论或常识判断或假设。优化操作并不一定总是能够有效运行。

2002-7-15

3.6 指向Data Members的指针
指向data members的指针可用来详细调查class members的底层布局,可用来决定vptr是放在class的起始处还是尾端,还可用来决定class中access sections的次序。

取一个nonstatic data member的地址,将会得到它在class的offset;而取一个static data member的地址或者取一个绑定于真正class object身上的data member的地址,将会得到该member在内存中的真正地址。这也正是someType someClass::*和someTye *潜在的区别。

2002-7-16

Function语意学 The Semantics of Function
C++支持三种类型的member functions:static、nonstatic和virtual,每一种类型的调用方式都不同。

4.1 Members的各种调用方式
1.   C++的设计准则之一便是nonstatic member function至少必须和一般的nonmember function有着相同的效率。编译器内部会将member函数实体转换为对等的nonmember函数实体,其步骤为:

ü          改写函数原型signature以安插一个额外的参数this到member function中,使得class object可以调用该函数。其中,this是const指针,若该函数为const,则反映在this上面的结果是this指向的data也为const;

ü          将每一个对nonstatic data member的存取操作改为经由this指针来存取;

ü          将member function重新写成一个外部函数,对函数名称进行mangling处理;

此后,每一个函数调用操作也都必须转换,用以提供相应的实参。

2.   关于虚拟函数的内部转换步骤:若normalize是一个virtual member function,ptr->normalize();会被内部转化为(*ptr->vptr[t])(ptr); 事实上,vptr名称也会被mangled,因为可能存在有多个vptrs;t是vitrual table slot的索引值,关联到normalize函数;第二个ptr表示this指针。

3.   使用class scope operator明确调用一个vitual function,或经由一个class object调用一个vitual function其决议方式会和nontatic member function一样!故virtual function的一个inline函数实体可被扩展开来,因而提供极大的效率利益。

4.   static member function的主要特征是没有this指针,这导致它不能直接存取其class中的nonstatic members,不能被声明为const、volatile或virtual,也不需要经由class object才能调用。static member function会被提出于class声明之外,并给予一个经过mangled的适当名称。如果取一个static member function的地址,得到的将是其在内存中的地址,其地址类型并不是一个指向class member function的指针,而是一个nonmember函数指针。static member function的一个意想不到的好处是可以成为一个callback函数,也可以成功地应用在thread函数身上。

2002-07-17

4.2 Virtual Member Functions虚拟成员函数
1.   C++中,多态polymorphism表示以一个public base class指针或reference寻址出一个derived class object。识别一个class是否支持多态,唯一适当的方法试看它是否有任何virtual function。只要class拥有一个virtual function,它就需要一份额外的执行期型别判断信息。

2.   一个class只会有一个virtual table,其中内含对应class object中所有的active virtual functions的函数实体的地址。这些active virtual functions包括:

ü          一个class定义的函数实体。它会改写overriding一个可能存在的base class virtual function。

ü          继承自base class的函数实体。此时该class不改写base class virtual function。

ü          一个pure_virtual_called()函数实体,它既可以扮演pure virtual function的空间保卫者,也可以当作执行期异常处理函数。如果该函数被调用,通常的操作是结束程序。

3.   每一个virtual function都被指派一个固定不变的索引值,该值在整个继承体系中保持与特定virtual function的关联。这样就可以在编译时期设定virtual function的调用。

2002-7-20

4.   多重继承下,一个上层basse classes数目为n的derived class,它将内含n-1个额外的virtual tables。其主要实体与最左端的base class共享,其中包含所有virtual functios的地址;n-1个次要实体与其它base classes有关,其中只包含出现在对应base class中virtual functions的地址。

5.   在多重继承中支持virtual function,其复杂度围绕在第二个及后继base class上,以及执行期this指针调整上。第二(或后继)base class会影响对virtual function支持的3种情况:

ü          通过指向第二个base class的指针,调用derived class virtual function;

ü          通过指向derived class的指针,调用第二个base class中一个继承而来的virtual function;

ü          允许virtual function函数的返回值类型有所变化,可能是base type,也可能是publicly derived type。

6.   关于执行期this指针调整比较有效率的解决方法是thunk。所谓thunk是一小端assembly码,用来以适当的offset值来调整this指针并跳到相应的virtual function。thunk技术允许virtual table slot继续内含一个简单的指针,此时多重继承将不需要任何空间上的额外负担!slots中的地址可以直接指向virtual function,也可以指向一个相关的thunk。

4.3 函数的效能
nonmember、static member和nonstatic member function在内部都会转化为完全相同的形式,三者效率相同。

2002-08-08

4.4 指向Member Function的指针
对一个nonstatic member function取址,得到的是该函数在内存中的地址;而面对一个virtual function,得到的将是一个索引值。这个值是不完整的,必须被绑定于一个class object上,才能够通过它调用函数。指向member function的指针的声明语法,以及指向member selection运算符的指针,其作用是作为this指针的空间保留者。因此,static member function的类型是函数指针,而不是指向member function的指针。

使用一个member function指针,如果并不用于virtual function、多重继承、virtual base class等情况的话,其成本并不比使用一个nonmember function指针要高。

4.5 Inline Functions
关键词inline只是一项请求。如果在某个层次上,函数的执行成本比一般的函数调用及返回机制所带来的负荷低,那么该请求被接受,编译器就用一个表达式合理地将函数扩展开来。真正的inline函数扩展操作是在函数调用的那一点上。在inline扩展期间,每一个形式参数会被对应的实际参数所取代,inline函数中的每一个局部变量都必须被放在函数调用的一个封闭区段中,并拥有一个独一无二的名称。这会带来参数的求值操作以及临时性对象的管理。

2002-08-11

构造、解构、拷贝语意学  Semantics of Construction, Destruction, and Copy
1.   一般而言,class的data member应该被初始化,而且只在constructor中或其它member functions中初始化,其它任何操作都将破坏其封装性质,使其维护和修改更加困难。

2.   可以定义并调用invoke一个pure virtual function,但它只能被静态调用,不能经由虚拟机制调用。每一个derived class destructor会被编译器加以扩展,静态调用每一个virtual base class以及上一层base class的destructor。因此,不管base class的virtual destructor是否声明为pure,它必须被定义。

5.1 无继承情况下的对象构造
C++ Standard要求编译器尽量延迟nontrivial members的实际合成操作,直到真正遇到其使用场所为止。

5.2 继承体系下的对象构造
一般而言,继承体系下编译器对constructor所作的扩充操作以及次序大约如下:

ü          所有virtual base class constructors必须从左到右、从深到浅被调用:如果class被列于member initialization list中,那么任何明确指定的参数都必须传递过去,否则如果class有一个default constructor,也应该调用它;class中的每一个virtual base class subobject的偏移量offset必须在执行期可被存取;如果class object是最底层most-derived的class,其constructors可能被调用,某些用以支持这个行为的机制必须被方进来。

ü          以base class的声明次序调用上一层base class constructors:如果base class被列于member initialization list中,那么任何明确指定的参数都必须传递过去,否则若它有default constructor或default memberwise copy constructor,那么就调用它;如果base class是多重继承下的第二或后继的base class,那么this指针必须有所调整。

ü          如果class object有virtual table pointer(s),它(们)必须被设定初值,指向适当的virtual table(s)。

ü          如果有一个member没有出现在member initialization list中,但它有default constructor,调用之。

ü          将member initialization list中的data members的初始化操作以members的声明次序放进constructor的函数本身。

2002-8-18

5.3对象复制语意学 Object Copy Semantics
1.   只有在默认行为所导致的语意不安全或者不正确以致发生别名化aliasing或者内存泄漏memory leak时,才需要设计一个copy assignment operator。否则,程序反倒会执行得较慢。

2.   如果仅仅是为了把NRV优化开关打开而提供一个copy constructor,那么就没有必要一定要提供一个copy assignment operator。

3.   copy assignment operator有一个非正交情况,那就是它缺乏一个平行于member initialization list的member assignment list。调用base class的copy assignment operator示例:

Point::operator = (p3d); 或 (*(Point*)this) = p3d; 或 (Point &)(*this) = p3d;

4.   事实上,copy assignment operator在虚拟继承情况下行为不佳,需要小心设计和说明。许多编译器甚至并不尝试取得正确的语意,它们在每一个中间的copy assignment operator中调用每一个base class instance,于是造成virtual base copy assignment operator的多个实体被调用。建议尽可能不要允许一个virtual base class的拷贝操作,并不要在任何virtual base class中声明data member。

5.5解构语意学 Semantics of Destruction
如果class没有定义destructor,那么只有在其内带的member object或base class拥有destructor时,编译器才会自动合成出一个destructor。一个由程序员定义的destructor被扩展的方式类似constructors被扩展的方式,只是顺序相反:

ü          destructor的函数本体首先被执行;

ü          如果class拥有member class objects,而后者拥有destructors,那么它们将以声明的相反顺序而调用;

ü          如果object内带一个vptr,则现在被重新设定以指向适当base class之virtual table;

ü          如果有任何直接的nonvirtual base classes拥有destructor,它们将以声明的相反顺序而调用;

ü          如果有任何virtual base classes拥有destructor,而前面讨论的这个class是most-derived class,那么它们会以原先构造顺序的相反顺序被调用。

2002-8-19

执行期语意学 Runtime Semantics
6.1对象的构造和解构
1.   一般而言,constructor和destructor的安插都如你所预期。但如果一个区段或函数中有一个以上的离开点,情况就会复杂一些,destructor会放在每一个离开点之前。通常,我们要求将object尽可能放在使用它的那个程序区附近,这样做可以节省不必要的对象产生和销毁操作。

2.   C++程序中所有的global objects都被放置在程序的data segment中,如果不明确指定初值,object所配置的内存内容将为0(C并不自动设定初值)。如果global object有constructor和destructor的话,我们说它需要静态的初始化和内存释放操作。

2002-8-20

3.   virtual base class的subobject在每个derived class中的位置可能会变动,不能在编译时期确定。以一个derived class的pointer或reference来存取virtual base class subobject,是一种nonconstant expression,必须在执行期方可评估求值。

4.   使用静态初始化的object有一些缺点。其一,无法放入try区段,任何throw操作必将触发exception handling library的默认函数terminate();其二,程序员必须为控制“需要跨越模块做静态初始化”objects的依赖顺序而产生的复杂度付出代价。建议根本就不要使用那些需要静态初始化的global objects。

5.   新的C++标准要求编译单位中的static local class objects必须在相应函数第一次被调用时才被构造,而且必须以相反的次序销毁。由于这些objects是在需要时才被构造,因此编译时期无法预期其集合和顺序。为支持新标准,可能要对被产生出来的static local class objects保持一个执行期链表。

2003-8-1

6.   对于对象数组定义,晚近的编译器一般会提供两个函数,分别用于处理没有virtual base class的class,以及内带virtual base class的class ,它们通常被称为vec_new、vec_vnew。前者类型通常为:

void* vec_new(                                                   // 初始化程序员未提供初值的连续元素

           void *array,                                               // 数组起始地址若为0,则动态分配

           size_t elem_size,                                       // 每一个class object的大小

           int elem_count,                                         // 数组中的元素数目

           void (*constructor) (void *),                    // class的default constructor指针

           void (*destructor) (void *, char)               // class的destructor指针,以0填入

); 如果程序员提供带有默认参数值的default constructor,编译器要做特殊处理,以传入默认参数值!

对应销毁数组的两个函数分别为vec_delete、vec_vdelete。前者类型通常为:

void* vec_delete(

           void *array,                                               // 数组起始地址

           size_t elem_size,                                       // 每一个class object的大小

           int elem_count,                                         // 数组中的元素数目

           void (*destructor) (void *, char)               // class的destructor指针

);

6.2 new和delete运算符
         注意区分operator new和new operator!前者负责分配内存;后者先调用前者分配内存,然后调用constructor以实施初始化。

《深度探索C++对象模型》读书笔记

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/xjtuse_mal/archive/2007/03/01/1517809.aspx

posted @ 2010-10-14 10:36 Vincent 阅读(392) | 评论 (0)编辑 收藏

仅列出标题
共8页: 1 2 3 4 5 6 7 8