codeArt

codeArt

UTF-8编码规则

1字节 0xxxxxxx 
2字节 110xxxxx 10xxxxxx 
3字节 1110xxxx 10xxxxxx 10xxxxxx 
4字节 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 
5字节 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 
6字节 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 
所以,UTF-8编码的实际位数是31

posted @ 2010-08-17 07:41 codeArt 阅读(213) | 评论 (0)编辑 收藏

Word编程c++参考

http://www.feiesoft.com/vba/word/
http://hopf.chem.brandeis.edu/yanglingfa/Qt/COM/wd/html/main.html


posted @ 2010-07-15 17:20 codeArt 阅读(405) | 评论 (0)编辑 收藏

dumpbin

在查看lib的信息时,可以用DUMPBIN。EXE来得到某个DLL中所输出的符号的清单。如下面的

命令:dumpbin /exports Cmpnt1.dll
如:
C:\WINDOWS\system32>dumpbin -exports msgsvc.dll
Microsoft (R) COFF Binary File Dumper Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.


Dump of file msgsvc.dll

File Type: DLL

  Section contains the following exports for msgsvc.dll

           0 characteristics
    41107F60 time date stamp Wed Aug 04 14:17:04 2004
        0.00 version
           1 ordinal base
           2 number of functions
           2 number of names

    ordinal hint RVA      name

          1    0 00004ABF ServiceMain
          2    1 00004595 SvchostPushServiceGlobals

  Summary

        1000 .data
        1000 .reloc
        1000 .rsrc
        8000 .text


C:\>dumpbin
Microsoft (R) COFF Binary File Dumper Version 6.00.844
Copyright (C) Microsoft Corp 1992-1998. All rights res

usage: DUMPBIN [options] [files]

   options:

      /ALL
      /ARCH
      /ARCHIVEMEMBERS
      /DEPENDENTS
      /DIRECTIVES
      /DISASM
      /EXPORTS
      /FPO
      /HEADERS
      /IMPORTS
      /LINENUMBERS
      /LINKERMEMBER[:{1|2}]
      /LOADCONFIG
      /OUT:filename
      /PDATA
      /RAWDATA[:{NONE|BYTES|SHORTS|LONGS}[,#]]
      /RELOCATIONS
      /SECTION:name
      /SUMMARY
      /SYMBOLS


若要运行 DUMPBIN,请使用下列语法:

DUMPBIN [options] files...

指定一个或多个二进制文件,以及控制信息所需的任何选项。 DUMPBIN 将该信息显示到标准输出。可以将输出重定向到文件,或者使用 /OUT 选项为输出指定文件名。

当在文件上运行 DUMPBIN 但未指定选项时,DUMPBIN 显示 /SUMMARY 输出。

当键入命令 dumpbin 但没有任何其他命令行输入时,DUMPBIN 显示汇总其选项的用法语句。

DUMPBIN 选项

/ALL

此选项显示除代码反汇编外的所有可用信息。使用 /DISASM 显示反汇编。可以与 /ALL 一起使用 /RAWDATA:NONE 来省略文件的原始二进制详细资料。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/ARCHIVEMEMBERS

此选项显示有关库成员对象的最少信息。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/CLRHEADER file

此处:

file
/clr 生成的图像文件。

备注

CLRHEADER 显示有关在任何托管程序中使用的 .NET 头的信息。输出显示 .NET 头及其中各节的位置和大小(以字节计)。

File Format Spec.doc 描述 .NET 头中的信息。NET SDK 将 File Format Spec.doc 安装在 Tools Developers Guide 目录中。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/DIRECTIVES

此选项转储图像中由编译器生成的 .directive 节。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/DEPENDENTS

转储图像从中导入函数的 DLL 的名称。不要转储导入函数名。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/DISASM

此选项显示代码段的反汇编,如果出现在文件中则使用符号。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/EXPORTS

此选项显示从可执行文件或 DLL 导出的所有定义。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/FPO

此选项显示框架指针优化 (FPO) 记录。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/HEADERS

此选项显示文件头和每节的头。当用于库时,显示每个成员对象 的头。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/IMPORTS[:file]

此选项显示导入到可执行文件或 DLL 的 DLL 列表(静态链接的和延迟加载)和上述每个 DLL 的各个导入。

可选 file 规范允许指定仅显示某个 DLL 的导入。例如:

dumpbin /IMPORTS:msvcrt.dll

此选项显示的输出与 /EXPORTS 输出相似。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/LINENUMBERS

此选项显示 COFF 行号。如果对象文件是用程序数据库 (/Zi)、C7 兼容 (/Z7) 或仅限行号 (/Zd) 编译的,则它包含行号。如果可执行文件或 DLL 是与生成调试信息 (/DEBUG) 链接的,则它包含 COFF 行号。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/LINKERMEMBER[:{1|2}]

此选项显示库中定义的公共符号。指定参数 1 将按对象顺序显示符号及其偏移量。指定参数 2 将显示对象的偏移量和索引号,然后按字母顺序列出这些符号及每个符号的对象索引。若要两个输出都获得,指定不带数字参数的 /LINKERMEMBER。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/LOADCONFIG

此选项转储 IMAGE_LOAD_CONFIG_DIRECTORY 结构,此结构是由 Windows NT 加载程序使用并在 WINNT.H 中定义的可选结构。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/OUT:filename

此选项指定输出的 filename。默认情 况下,DUMPBIN 将信息显示到标准输出。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/PDBPATH[:VERBOSE] filename

此处:

filename
要为其查找匹配 .pdb 文件的 .dll 或 .exe 文件名。
VERBOSE(可选)
报告曾尝试在其中定位 .pdb 文件的所有目录。

备注

/PDBPATH 将沿调试器搜索 .pdb 文件的同一路径搜索计算机,并将报告哪些 .pdb 文件(若有)和 filename 中指定的文件相对应。

使用 Visual Studio 调试器时可能会遇到问题,这是因为调试器对调试文件的不同版本使用 .pdb 文件。

/PDBPATH 将沿下列路径搜索 .pdb 文件:

  • 检查可执行文件驻留的位置。
  • 检查写入可执行文件的 PDB 的位置。这通常是图像被链接时的位置。
  • 沿 Visual Studio IDE 中配置的搜索路径检查。
  • 沿 _NT_SYMBOL_PATH 和 _NT_ALT_SYMBOL_PATH 环境变量中的路径检查。
  • 在 Windows 目录中检查。
/PDATA

仅用于 RISC 处理器。

此选项从图像或对象转储异常表 (.pdata)。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/RAWDATA[:{1|2|4|8|NONE[,number]]

此选项显示文件中每节的原始内容。参数控制显示格式,如下所 示:

参数 结果
1 默认值。内容以十六进制字节显 示,如果内容具有打印的表示形式,则还显示为 ASCII 字符。
2 内容显示为十六进制的 2 字节值。
4 内容显示为十六进制的 4 字节值。
8 内容显示为十六进制的 8 字节值。
NONE 取消显示原始数据。此参数对控制 /ALL 输出很有用。
Number 显示的行被设置为每行具有 number 个值的宽度。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/RELOCATIONS

此选项显示对象或图像中的任何重定位。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/SECTION:section

此选项限制与指定的 section 有关的信息的输出。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/SUMMARY

此选项显示有关节的最少信息(包括总大小)。如果未指定其他 选项,则此选项为默认值。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/SYMBOLS

此选项显示 COFF 符号表。符号表存在于所有对象文件中。而对于图像文件,只有当它是与 /DEBUG 链接的时,它才包含 COFF 符号表。

下面是关于 /SYMBOLS 输出的说明。通过查阅 winnt.h(IMAGE_SYMBOL 和 IMAGE_AUX_SYMBOL)或 COFF 文档,可找到有关 /SYMBOLS 输出含义的附加信息。

假设有下列示例转储:

Dump of file main.obj
File Type: COFF OBJECT

COFF SYMBOL TABLE
000 00000000 DEBUG notype Filename | .file
main.cpp
002 000B1FDB ABS notype Static | @comp.id
003 00000000 SECT1 notype Static | .drectve
Section length 26, #relocs 0, #linenums 0, checksum 722C964F
005 00000000 SECT2 notype Static | .text
Section length 23, #relocs 1, #linenums 0, checksum 459FF65F, selection 1 (pick no duplicates)
007 00000000 SECT2 notype () External | _main
008 00000000 UNDEF notype () External | ?MyDump@@YAXXZ (void __cdecl MyDump(void))

String Table Size = 0x10 bytes

Summary

26 .drectve
23 .text

对于以符号号码开头的行,下列说明描述了含有与用户相关的信 息的列:

  • 开头的 3 位数字是符号索引/号码。
  • 如果第三列包含 SECTx,则 符号在对象文件的那一节中定义。但如果出现 UNDEF,则它不在那个对象中定义并且必须在其他地方被解析。
  • 第五列 (Static, External) 说明符号是否只在那个对象的内部可见,或者是否是公共的(外部可见)。静态符号 _sym 不会链接到公共符号 _sym;这些符号是名为 _sym 的函数的两种不同实例。

编号行中的最后一列是符号名(修饰名和未修饰名)。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。

/UNWINDINFO

在程序图像(例如 exe 和 dll)中转储结构化异常处理 (SEH) 表的展开描述符。/UNWINDINFO 仅适用于 IA64 图像。

只有 /HEADERS DUMPBIN 选项可用于由 /GL 编译器选项产生的文件。


posted @ 2010-07-12 15:07 codeArt 阅读(656) | 评论 (0)编辑 收藏

开源协议

当Adobe、Microsoft、Sun等一系列巨头开始表现出对”开源”的青睐时,”开源”的时代即将到来!

最初来自:sinoprise.com/read.php?tid-662-page-e-fpage-1.html(遗憾的是这个链接已经打不开 了),我基本未改动,只是进行了一些排版和整理。
参考文献:http://www.fsf.org/licensing/licenses/

现今存在的开源协议很多,而经过Open Source Initiative组织通过批准的开源协议目前有58种(http://www.opensource.org/licenses/alphabetical)。 我们在常见的开源协议如BSD, GPL, LGPL,MIT等都是OSI批准的协议。如果要开源自己的代码,最好也是选择这些被批准的开源协议。

这里我们来看四种最常用的开源协议及它们的适用范围,供那些准备开源或者使用开源产品的开发人员/厂家参考。

BSD开源协议( original BSD license FreeBSD license Original BSD license

BSD开源协议是一个给于使用者很大自由的协议。基本上使用者可以”为所欲为”,可以自由的使用,修改源代码,也可以将修改后的代码作为开源或者专 有软件再发布。

但”为所欲为”的前提当你发布使用了BSD协议的代码,或则以BSD协议代码为基础做二次开发自己的产品时,需要满足三个条件:

  1. 如果再发布的产品中包含源代码,则在源代码中必须带有原来代码中的BSD协议。
  2. 如果再发布的只是二进制类库/软件,则需要在类库/软件的文档和版权声明中包含原来代码中的BSD协议。
  3. 不可以用开源代码的作者/机构名字和原来产品的名字做市场推广。

BSD 代码鼓励代码共享,但需要尊重代码作者的著作权。BSD由于允许使用者修改和重新发布代码,也允许使用或在BSD代码上开发商业软件发布和销售,因此是对 商业集成很友好的协议。而很多的公司企业在选用开源产品的时候都首选BSD协议,因为可以完全控制这些第三方的代码,在必要的时候可以修改或者二次开发。

Apache Licence 2.0( Apache License, Version 2.0Apache License, Version 1.1Apache License, Version 1.0

Apache Licence是著名的非盈利开源组织Apache采用的协议。该协议和BSD类似,同样鼓励代码共享和尊重原作者的著作权,同样允许代码修改,再发布 (作为开源或商业软件)。需要满足的条件也和BSD类似:

  1. 需要给代码的用户一份Apache Licence
  2. 如果你修改了代码,需要再被修改的文件中说明。
  3. 在延伸的代码中(修改和有源代码衍生的代码中)需要带有原来代码中的协议,商标,专利声明和其他原来作者规定需要包含的说明。
  4. 如果再发布的产品中包含一个Notice文件,则在Notice文件中需要带有Apache Licence。你可以在Notice中增加自己的许可,但不可以表现为对Apache Licence构成更改。

Apache Licence也是对商业应用友好的许可。使用者也可以在需要的时候修改代码来满足需要并作为开源或商业产品发布/销售。

GPL( GNU General Public License

我们很熟悉的Linux就是采用了GPL。GPL协议和BSD, Apache Licence等鼓励代码重用的许可很不一样。GPL的出发点是代码的开源/免费使用和引用/修改/衍生代码的开源/免费使用,但不允许修改后和衍生的代 码做为闭源的商业软件发布和销售。这也就是为什么我们能用免费的各种linux,包括商业公司的linux和linux上各种各样的由个人,组织,以及商 业软件公司开发的免费软件了。

GPL协议的主要内容是只要在一个软件中使用(“使用”指类库引用,修改后的代码或者衍生代码)GPL 协议的产品,则该软件产品必须也采用GPL协议,既必须也是开源和免费。 这就是所谓的”传染性” 。GPL协议的产品作 为一个单独的产品使用没有任何问题,还可以享受免费的优势。

由于GPL严格要求使用了GPL类库的软件产品必须使用GPL协议,对于使用GPL协议的开源代码,商业软件或者对代码有保密要求的部门就不适合集 成/采用作为类库和二次开发的基础。

其它细节如再发布的时候需要伴随GPL协议等和BSD/Apache等类似。

LGPL( GNU Lesser General Public License

LGPL是GPL的一个为主要为类库使用设计的开源协议。和GPL要求任何使用/修改/衍生之GPL类库的的软件必须采用GPL协议不同。LGPL 允许商业软件通过类库引用(link)方式使用LGPL类库而不需要开源商业软件的代码。这使得采用LGPL协议的开源代码可以被商业软件作为类库引用并 发布和销售。

但是如果修改LGPL协议的代码或者衍生,则所有修改的代码,涉及修改部分的额外代码和衍生的代码都必须采用LGPL协议。因此LGPL协议的开源 代码很适合作为第三方类库被商业软件引用,但不适合希望以LGPL协议代码为基础,通过修改和衍生的方式做二次开发的商业软件采用。

GPL/LGPL都保障原作者的知识产权,避免有人利用开源代码复制并开发类似的产品

MIT(MIT

MIT是和BSD一样宽范的许可协议,作者只想保留版权,而无任何其他了限制.也就是说,你必须在你的发行版里包含原许可协议的声明,无论你是以二 进制发布的还是以源代码发布的.


posted @ 2010-07-09 12:17 codeArt 阅读(159) | 评论 (0)编辑 收藏

注入代码到其他进程的方法

http://www.codeproject.com/KB/threads/winspy.aspx

Ⅰ. Windows 钩子

示例程序:HookSpy 和 HookInjEx

Windows钩子的主要作用就是监视某个线程的消息流动。一般可分为:
1. 局部钩子,只监视你自己进程中某个线程的消息流动。
2. 远程钩子,又可以分为:
a. 特定线程的,监视别的进程中某个线程的消息;
b. 系统级的,监视整个系统中正在运行的所有线程的消息。

    如果被挂钩(监视)的线程属于别的进程(情况2a和2b),你的钩子过程(hook procedure)必须放在一个动态连接库(DLL)中。系统把这包含了钩子过程的DLL映射到被挂钩的线程的地址空间。Windows会映射整个 DLL而不仅仅是你的钩子过程。这就是为什么windows钩子可以用来向其他线程的地址空间注入代码的原因了。

    在这里我不想深入讨论钩子的问题(请看MSDN中对SetWindowsHookEx的说明),让我再告诉你两个文档中找不到的诀窍,可能会有用:
1. 当SetWindowHookEx调用成功后,系统会自动映射这个DLL到被挂钩的线程,但并不是立即映射。因为所有的Windows钩子都是基于消息 的,直到一个适当的事件发生后这个DLL才被映射。比如:
如 果你安装了一个监视所有未排队的(nonqueued)的消息的钩子(WH_CALLWNDPROC),只有一个消息发送到被挂钩线程(的某个窗口)后这 个DLL才被映射。也就是说,如果在消息发送到被挂钩线程之前调用了UnhookWindowsHookEx那么这个DLL就永远不会被映射到该线程(虽 然SetWindowsHookEx调用成功了)。为了强制映射,可以在调用SetWindowsHookEx后立即发送一个适当的消息到那个线程。

    同理,调用UnhookWindowsHookEx之后,只有特定的事件发生后DLL才真正地从被挂钩线程卸载。

2. 当你安装了钩子后,系统的性能会受到影响(特别是系统级的钩子)。然而如果你只是使用的特定线程的钩子来映射DLL而且不截获如何消息的话,这个缺陷也可 以轻易地避免。看一下下面的代码片段:
BOOL APIENTRY DllMain( HANDLE hModule,
                       DWORD ul_reason_for_call,
                       LPVOID lpReserved )
{
    if( ul_reason_for_call == DLL_PROCESS_ATTACH )
    {
        //用 LoadLibrary增加引用次数
        char lib_name[MAX_PATH];
        ::GetModuleFileName( hModule, lib_name, MAX_PATH );
        ::LoadLibrary( lib_name );

        // 安全卸载钩子
        ::UnhookWindowsHookEx( g_hHook );
    }   
    return TRUE;
}

    我们来看一下。首先,我们用钩子映射这个DLL到远程线程,然后,在DLL被真正映射进去后,我们立即卸载挂钩(unhook)。一般来说当第一个消息到 达被挂钩线程后,这DLL会被卸载,然而我们通过LoadLibrary来增加这个DLL的引用次数,避免了DLL被卸载。

    剩下的问题是:使用完毕后如何卸载这个DLL?UnhookWindowsHookEx不行了,因为我们已经对那个线程取消挂钩(unhook)了。你可 以这么做:
○在你想要卸载这个DLL之前再安装一个钩子;
○发送一个“特殊”的消息到远程线程;
○在你的新钩子的钩子过程(hook procedure)中截获该消息,调用FreeLibrary 和 (译者注:对新钩子调用)UnhookwindowsHookEx。
现在,钩子只在映射DLL到远程进程和从远程进程卸载DLL时使用,对被挂钩线程的性能没有影响。也就是说,我们找到了一种(相比第二部分讨论的 LoadLibrary技术)WinNT和Win9x下都可以使用的,不影响目的进程性能的DLL映射机制。

    但是,我们应该在何种情况下使用该技巧呢?通常是在DLL需要在远程进程中驻留较长时间(比如你要子类[subclass]另一个进程中的控件)并且你不 想过于干涉目的进程时比较适合使用这种技巧。我在HookSpy中并没有使用它,因为那个DLL只是短暂地注入一段时间――只要能取得密码就足够了。我在 另一个例子HookInjEx中演示了这种方法。HookInjEx把一个DLL映射进“explorer.exe”(当然,最后又从其中卸载),子类了 其中的开始按钮,更确切地说我是把开始按钮的鼠标左右键点击事件颠倒了一下。

    Ⅱ. CreateRemoteThread 和 LoadLibrary 技术
示例程序:LibSpy
    通常,任何进程都可以通过LoadLibrary动态地加载DLL,但是我们如何强制一个外部进程调用该函数呢?答案是 CreateRemoteThread。
让我们先来看看LoadLibrary和FreeLibrary的函数声明:

HINSTANCE LoadLibrary(
LPCTSTR lpLibFileName   // address of filename of library module
);

BOOL FreeLibrary(
HMODULE hLibModule      // handle to loaded library module
);

再和CreateRemoteThread的线程过程(thread procedure)ThreadProc比较一下:
DWORD WINAPI ThreadProc(
LPVOID lpParameter   // thread data
);

    你会发现所有的函数都有同样的调用约定(calling convention)、都接受一个32位的参数并且返回值类型的大小也一样。也就是说,我们可以把LoadLibrary/FreeLibrary的指 针作为参数传递给CrateRemoteThread。

    然而,还有两个问题(参考下面对CreateRemoteThread的说明)

    1. 传递给ThreadProc的lpStartAddress 参数必须为远程进程中的线程过程的起始地址。
    2. 如果把ThreadProc的lpParameter参数当做一个普通的32位整数(FreeLibrary把它当做HMODULE)那么没有如何 问题,但是如果把它当做一个指针(LoadLibrary把它当做一个char*),它就必须指向远程进程中的内存数据。

    第一个问题其实已经迎刃而解了,因为LoadLibrary和FreeLibrary都是存在于kernel32.dll中的函数,而kernel32可 以保证任何“正常”进程中都存在,且其加载地址都是一样的。(参看附录A)于是LoadLibrary/FreeLibrary在任何进程中的地址都是一 样的,这就保证了传递给远程进程的指针是个有效的指针。

    第二个问题也很简单:把DLL的文件名(LodLibrary的参数)用WriteProcessMemory复制到远程进程。

    所以,使用CreateRemoteThread和LoadLibrary技术的步骤如下:
    1. 得到远程进程的HANDLE(使用OpenProcess)。
    2. 在远程进程中为DLL文件名分配内存(VirtualAllocEx)。
    3. 把DLL的文件名(全路径)写到分配的内存中(WriteProcessMemory)
    4. 使用CreateRemoteThread和LoadLibrary把你的DLL映射近远程进程。
    5. 等待远程线程结束(WaitForSingleObject),即等待LoadLibrary返回。也就是说当我们的DllMain(是以 DLL_PROCESS_ATTACH为参数调用的)返回时远程线程也就立即结束了。
    6. 取回远程线程的结束码(GetExitCodeThtread),即LoadLibrary的返回值――我们DLL加载后的基地址(HMODULE)。
    7. 释放第2步分配的内存(VirtualFreeEx)。
    8. 用CreateRemoteThread和FreeLibrary把DLL从远程进程中卸载。调用时传递第6步取得的HMODULE给 FreeLibrary(通过CreateRemoteThread的lpParameter参数)。
    9. 等待线程的结束(WaitSingleObject)。

    同时,别忘了在最后关闭所有的句柄:第4、8步得到的线程句柄,第1步得到的远程进程句柄。

    现在我们看看LibSpy的部分代码,分析一下以上的步骤是任何实现的。为了简单起见,没有包含错误处理和支持Unicode的代码。
HANDLE hThread;
char    szLibPath[_MAX_PATH]; // "LibSpy.dll"的文件名
                               // (包含全路径!);
void*   pLibRemote;             // szLibPath 将要复制到地址
DWORD   hLibModule;   //已加载的DLL的基地址(HMODULE);
HMODULE hKernel32 = ::GetModuleHandle("Kernel32");

//初始化 szLibPath
//...

// 1. 在远程进程中为szLibPath 分配内存
// 2. 写szLibPath到分配的内存
pLibRemote = ::VirtualAllocEx( hProcess, NULL, sizeof(szLibPath),
                               MEM_COMMIT, PAGE_READWRITE );
::WriteProcessMemory( hProcess, pLibRemote, (void*)szLibPath,
                      sizeof(szLibPath), NULL );


// 加载 "LibSpy.dll" 到远程进程
// (通过 CreateRemoteThread & LoadLibrary)
hThread = ::CreateRemoteThread( hProcess, NULL, 0,
            (LPTHREAD_START_ROUTINE) ::GetProcAddress( hKernel32,
                                       "LoadLibraryA" ),
             pLibRemote, 0, NULL );
::WaitForSingleObject( hThread, INFINITE );

//取得DLL的基地址
::GetExitCodeThread( hThread, &hLibModule );

//扫尾工作
::CloseHandle( hThread );
::VirtualFreeEx( hProcess, pLibRemote, sizeof(szLibPath), MEM_RELEASE );

我们放在DllMain中的真正要注入的代码(比如为SendMessage)现在已经被执行了(由于DLL_PROCESS_ATTACH),所 以现在可以把DLL从目的进程中卸载了。

// 从目标进程卸载LibSpu.dll
// (通过 CreateRemoteThread & FreeLibrary)
hThread = ::CreateRemoteThread( hProcess, NULL, 0,
            (LPTHREAD_START_ROUTINE) ::GetProcAddress( hKernel32,
                                       "FreeLibrary" ),
            (void*)hLibModule, 0, NULL );
::WaitForSingleObject( hThread, INFINITE );

// 扫尾工作
::CloseHandle( hThread );

进程间通讯
    到目前为止,我们仅仅讨论了任何向远程进程注入DLL,然而,在多数情况下被注入的DLL需要和你的程序以某种方式通讯(记住,那个DLL是被映射到远程 进程中的,而不是在你的本地程序中!)。以密码间谍为例:那个DLL需要知道包含了密码的的控件的句柄。很明显,这个句柄是不能在编译期间硬编码 (hardcoded)进去的。同样,当DLL得到密码后,它也需要把密码发回我们的程序。

    幸运的是,这个问题有很多种解决方案:文件映射(Mapping),WM_COPYDATA,剪贴板等。还有一种非常便利的方法#pragma data_seg。这里我不想深入讨论因为它们在MSDN(看一下Interprocess Communications部分)或其他资料中都有很好的说明。我在LibSpy中使用的是#pragma data_seg。

    你可以在本文章的开头找到LibSpy及源代码的下载链接。

Ⅲ.CreateRemoteThread和 WriteProcessMemory技术
示例程序:WinSpy

    另一种注入代码到其他进程地址空间的方法是使用WriteProcessMemory API。这次你不用编写一个独立的DLL而是直接复制你的代码到远程进程(WriteProcessMemory)并用 CreateRemoteThread执行之。

    让我们看一下CreateRemoteThread的声明:
HANDLE CreateRemoteThread(
HANDLE hProcess,        // handle to process to create thread in
LPSECURITY_ATTRIBUTES lpThreadAttributes, // pointer to security
                                             // attributes
DWORD dwStackSize,      // initial thread stack size, in bytes
LPTHREAD_START_ROUTINE lpStartAddress,     // pointer to thread
                                             // function
LPVOID lpParameter,     // argument for new thread
DWORD dwCreationFlags, // creation flags
LPDWORD lpThreadId      // pointer to returned thread identifier
);

和CreateThread相比,有一下不同:

●增加了hProcess参数。这是要在其中创建线程的进程的句柄。
●CreateRemoteThread的lpStartAddress参数必须指向远程进程的地址空间中的函数。这个函数必须存在于远程进程中,所以我 们不能简单地传递一个本地ThreadFucn的地址,我们必须把代码复制到远程进程。
●同样,lpParameter参数指向的数据也必须存在于远程进程中,我们也必须复制它。

    现在,我们总结一下使用该技术的步骤:

    1. 得到远程进程的HANDLE(OpenProcess)。
    2. 在远程进程中为要注入的数据分配内存(VirtualAllocEx)、
    3. 把初始化后的INJDATA结构复制到分配的内存中(WriteProcessMemory)。
    4. 在远程进程中为要注入的数据分配内存(VirtualAllocEx)。
    5. 把ThreadFunc复制到分配的内存中(WriteProcessMemory)。
    6. 用CreateRemoteThread启动远程的ThreadFunc。
    7. 等待远程线程的结束(WaitForSingleObject)。
    8. 从远程进程取回指执行结果(ReadProcessMemory 或 GetExitCodeThread)。
    9. 释放第2、4步分配的内存(VirtualFreeEx)。
    10. 关闭第6、1步打开打开的句柄。

    另外,编写ThreadFunc时必须遵守以下规则:
    1. ThreadFunc不能调用除kernel32.dll和user32.dll之外动态库中的API函数。只有kernel32.dll和 user32.dll(如果被加载)可以保证在本地和目的进程中的加载地址是一样的。(注意:user32并不一定被所有的Win32进程加载!)参考附 录A。如果你需要调用其他库中的函数,在注入的代码中使用LoadLibrary和GetProcessAddress强制加载。如果由于某种原因,你需 要的动态库已经被映射进了目的进程,你也可以使用GetMoudleHandle代替LoadLibrary。同样,如果你想在ThreadFunc中调 用你自己的函数,那么就分别复制这些函数到远程进程并通过INJDATA把地址提供给ThreadFunc。
    2. 不要使用static字符串。把所有的字符串提供INJDATA传递。为什么?编译器会把所有的静态字符串放在可执行文件的“.data”段,而仅 仅在代码中保留它们的引用(即指针)。这样,远程进程中的ThreadFunc就会执行不存在的内存数据(至少没有在它自己的内存空间中)。
    3. 去掉编译器的/GZ编译选项。这个选项是默认的(看附录B)。
    4. 要么把ThreadFunc和AfterThreadFunc声明为static,要么关闭编译器的“增量连接(incremental linking)”(看附录C)。
    5. ThreadFunc中的局部变量总大小必须小于4k字节(看附录D)。注意,当degug编译时,这4k中大约有10个字节会被事先占用。
    6. 如果有多于3个switch分支的case语句,必须像下面这样分割开,或用if-else if代替:

switch( expression ) {
    case constant1: statement1; goto END;
    case constant2: statement2; goto END;
    case constant3: statement2; goto END;
}
switch( expression ) {
    case constant4: statement4; goto END;
    case constant5: statement5; goto END;
    case constant6: statement6; goto END;
}
END:
(参考附录E)

    如果你不按照这些游戏规则玩的话,你注定会使目的进程挂掉!记住,不要妄想远程进程中的任何数据会和你本地进程中的数据存放在相同内存地址!(参看附录 F)
(原 话如此:You will almost certainly crash the target process if you don't play by those rules. Just remember: Don't assume anything in the target process is at the same address as it is in your process.)


GetWindowTextRemote(A/W)

    所有取得远程edit中文本的工作都被封装进这个函数:GetWindowTextRemote(A/W):
int GetWindowTextRemoteA( HANDLE hProcess, HWND hWnd, LPSTR lpString );
int GetWindowTextRemoteW( HANDLE hProcess, HWND hWnd, LPWSTR lpString );

参数:
hProcess
目的edit所在的进程句柄
hWnd
目的edit的句柄
lpString
接收字符串的缓冲

返回值:
成功复制的字符数。

    让我们看以下它的部分代码,特别是注入的数据和代码。为了简单起见,没有包含支持Unicode的代码。

INJDATA

typedef LRESULT     (WINAPI *SENDMESSAGE)(HWND,UINT,WPARAM,LPARAM);

typedef struct {   
    HWND hwnd;                    // handle to edit control
    SENDMESSAGE fnSendMessage;   // pointer to user32!SendMessageA

    char psText[128];    // buffer that is to receive the password
} INJDATA;


    INJDATA是要注入远程进程的数据。在把它的地址传递给SendMessageA之前,我们要先对它进行初始化。幸运的是unse32.dll在所有 的进程中(如果被映射)总是被映射到相同的地址,所以SendMessageA的地址也总是相同的,这也保证了传递给远程进程的地址是有效的。

ThreadFunc

static DWORD WINAPI ThreadFunc (INJDATA *pData)
{
    pData->fnSendMessage( pData->hwnd, WM_GETTEXT,    // 得到密码
                          sizeof(pData->psText),
                          (LPARAM)pData->psText );
    return 0;
}

// This function marks the memory address after ThreadFunc.
// int cbCodeSize = (PBYTE) AfterThreadFunc - (PBYTE) ThreadFunc.
static void AfterThreadFunc (void)
{
}

ThreadFunc是远程线程实际执行的代码。
    ●注意AfterThreadFunc是如何计算ThreadFunc的代码大小的。一般地,这不是最好的办法,因为编译器会改变你的函数中代码的顺序 (比如它会把ThreadFunc放在AfterThreadFunc之后)。然而,你至少可以确定在同一个工程中,比如在我们的WinSpy工程中,你 函数的顺序是固定的。如果有必要,你可以使用/ORDER连接选项,或者,用反汇编工具确定ThreadFunc的大小,这个也许会更好。

如何用该技术子类(subclass)一个远程控件
示例程序:InjectEx

    让我们来讨论一个更复杂的问题:如何子类属于其他进程的一个控件?

    首先,要完成这个任务,你必须复制两个函数到远程进程:
    1. ThreadFunc,这个函数通过调用SetWindowLong API来子类远程进程中的控件,
    2. NewProc, 那个控件的新窗口过程(Window Procedure)。

    然而,最主要的问题是如何传递数据到远程的NewProc。因为NewProc是一个回调(callback)函数,它必须符合特定的要求(译者注:这里 指的主要是参数个数和类型),我们不能再简单地传递一个INJDATA的指针作为它的参数。幸运的我已经找到解决这个问题的方法,而且是两个,但是都要借 助于汇编语言。我一直都努力避免使用汇编,但是这一次,我们逃不掉了,没有汇编不行的。

解决方案1
看下面的图片:

不知道你是否注意到了,INJDATA紧挨着NewProc放在NewProc的前面?这样的话在编译期间NewProc就可以知道INJDATA 的内存地址。更精确地说,它知道INJDATA相对于它自身地址的相对偏移,但是这并不是我们真正想要的。现在,NewProc看起来是这个样子:
static LRESULT CALLBACK NewProc(
HWND hwnd,       // handle to window
UINT uMsg,       // message identifier
WPARAM wParam,   // first message parameter
LPARAM lParam ) // second message parameter
{
    INJDATA* pData = (INJDATA*) NewProc; // pData 指向
                                          // NewProc;
    pData--;              // 现在pData指向INJDATA;
                          // 记住,INJDATA 在远程进程中刚好位于
                          // NewProc的紧前面;

    //-----------------------------
    // 子类代码
    // ........
    //-----------------------------

    //调用用来的的窗口过程;
    // fnOldProc (由SetWindowLong返回) 是被ThreadFunc(远程进程中的)初始化
    // 并且存储在远程进程中的INJDATA里的;
    return pData->fnCallWindowProc( pData->fnOldProc,
                                    hwnd,uMsg,wParam,lParam );
}

    然而,还有一个问题,看第一行:
INJDATA* pData = (INJDATA*) NewProc;

    pData被硬编码为我们进程中NewProc的地址,但这是不对的。因为NewProc会被复制到远程进程,那样的话,这个地址就错了。

    用C/C++没有办法解决这个问题,可以用内联的汇编来解决。看修改后的NewProc:

static LRESULT CALLBACK NewProc(
HWND hwnd,      // handle to window
UINT uMsg,      // message identifier
WPARAM wParam, // first message parameter
LPARAM lParam ) // second message parameter
{
    // 计算INJDATA 的地址;
    // 在远程进程中,INJDATA刚好在
    //NewProc的前面;
    INJDATA* pData;
    _asm {
        call    dummy
dummy:
        pop     ecx         // <- ECX 中存放当前的EIP
        sub     ecx, 9      // <- ECX 中存放NewProc的地址
        mov     pData, ecx
    }
    pData--;

    //-----------------------------
    // 子类代码
    // ........
    //-----------------------------

    // 调用原来的窗口过程
    return pData->fnCallWindowProc( pData->fnOldProc,
                                    hwnd,uMsg,wParam,lParam );
}

    这是什么意思?每个进程都有一个特殊的寄存器,这个寄存器指向下一条要执行的指令的内存地址,即32位Intel和AMD处理器上所谓的EIP寄存器。因 为EIP是个特殊的寄存器,所以你不能像访问通用寄存器(EAX,EBX等)那样来访问它。换句话说,你找不到一个可以用来寻址EIP并且对它进行读写的 操作码(OpCode)。然而,EIP同样可以被JMP,CALL,RET等指令隐含地改变(事实上它一直都在改变)。让我们举例说明32位的Intel 和AMD处理器上CALL/RET是如何工作的吧:

    当我们用CALL调用一个子程序时,这个子程序的地址被加载进EIP。同时,在EIP被改变之前,它以前的值会被自动压栈(在后来被用作返回指令指针 [return instruction-pointer])。在子程序的最后RET指令自动把这个值从栈中弹出到EIP。

    现在我们知道了如何通过CALL和RET来修改EIP的值了,但是如何得到他的当前值?
还记得CALL把EIP的值压栈了吗?所以为了得到EIP的值我们调用了一个“假(dummy)函数”然后弹出栈顶值。看一下编译过的NewProc:

Address   OpCode/Params   Decoded instruction
--------------------------------------------------
:00401000 55          push ebp            ; entry point of
                                               ; NewProc
:00401001 8BEC            mov ebp, esp
:00401003 51              push ecx
:00401004 E800000000      call 00401009       ; *a*    call dummy
:00401009 59          pop ecx            ; *b*
:0040100A 83E909          sub ecx, 00000009   ; *c*
:0040100D 894DFC          mov [ebp-04], ecx   ; mov pData, ECX
:00401010 8B45FC          mov eax, [ebp-04]
:00401013 83E814          sub eax, 00000014   ; pData--;
.....
.....
:0040102D 8BE5            mov esp, ebp
:0040102F 5D              pop ebp
:00401030 C21000          ret 0010

    a. 一个假的函数调用;仅仅跳到下一条指令并且(译者注:更重要的是)把EIP压栈。
    b. 弹出栈顶值到ECX。ECX就保存的EIP的值;这也就是那条“pop ECX”指令的地址。
    c. 注意从NewProc的入口点到“pop ECX”指令的“距离”为9字节;因此把ECX减去9就得到的NewProc的地址了。

    这样一来,不管被复制到什么地方,NewProc总能正确计算自身的地址了!然而,要注意从NewProc的入口点到“pop ECX”的距离可能会因为你的编译器/链接选项的不同而不同,而且在Release和Degub版本中也是不一样的。但是,不管怎样,你仍然可以在编译期 知道这个距离的具体值。
    1. 首先,编译你的函数。
    2. 在反汇编器(disassembler)中查出正确的距离值。
    3. 最后,使用正确的距离值重新编译你的程序。

    这也是InjectEx中使用的解决方案。InjectEx和HookInjEx类似,交换开始按钮上的鼠标左右键点击事件。


解决方案2

    在远程进程中把INJDATA放在NewProc的前面并不是唯一的解决方案。看一下下面的NewProc:
static LRESULT CALLBACK NewProc(
HWND hwnd,      // handle to window
UINT uMsg,      // message identifier
WPARAM wParam, // first message parameter
LPARAM lParam ) // second message parameter
{
    INJDATA* pData = 0xA0B0C0D0;    // 一个假值

    //-----------------------------
    // 子类代码
    // ........
    //-----------------------------

    // 调用以前的窗口过程
    return pData->fnCallWindowProc( pData->fnOldProc,
                                    hwnd,uMsg,wParam,lParam );
}

    这里,0XA0B0C0D0仅仅是INJDATA在远程进程中的地址的占位符(placeholder)。你无法在编译期得到这个值,然而你在调用 VirtualAllocEx(为INJDATA分配内存时)后确实知道INJDATA的地址!(译者注:就是VirtualAllocEx的返回值)

    我们的NewProc编译后大概是这个样子:
Address   OpCode/Params     Decoded instruction
--------------------------------------------------
:00401000 55                push ebp
:00401001 8BEC              mov ebp, esp
:00401003 C745FCD0C0B0A0    mov [ebp-04], A0B0C0D0
:0040100A ...
....
....
:0040102D 8BE5              mov esp, ebp
:0040102F 5D                pop ebp
:00401030 C21000            ret 0010

    编译后的机器码应该为:558BECC745FCD0C0B0A0......8BE55DC21000。

    现在,你这么做:
    1. 把INJDATA,ThreadFunc和NewFunc复制到目的进程。
    2. 改变NewPoc的机器码,让pData指向INJDATA的真实地址。
    比如,假设INJDATA的的真实地址(VirtualAllocEx的返回值)为0x008a0000,你把NewProc的机器码改为:

558BECC745FCD0C0B0A0......8BE55DC21000 <- 修改前的 NewProc 1   
558BECC745FC00008A00......8BE55DC21000 <- 修改后的 NewProc

    也就是说,你把假值 A0B0C0D0改为INJDATA的真实地址2
    3. 开始指向远程的ThreadFunc,它子类了远程进程中的控件。

    ¹ 你可能会问,为什么A0B0C0D0和008a0000在编译后的机器码中为逆序的。这时因为Intel和AMD处理器使用littl-endian标记 法(little-endian notation)来表示它们的(多字节)数据。换句话说:一个数的低字节(low-order byte)在内存中被存放在最低位,高字节(high-order byte)存放在最高位。
想像一下,存放在四个字节中的单词“UNIX”,在big-endia系统中被存储为“UNIX”,在little-endian系统中被存储为 “XINU”。

    ² 一些蹩脚的破解者用类似的方法来修改可执行文件的机器码,但是一个程序一旦载入内存,就不能再更改自身的机器码(一个可执行文件的.text段是写保护 的)。我们能修改远程进程中的NewProc是因为它所处的那块内存在分配时给予了PAGE_EXECUTE_READWRITE属性。

    何时使用CreateRemoteThread和WriteProcessMemory技术

   通过CreateRemoteThread和WriteProcessMemory来注入代码的技术,和其他两种方法相比,不需要一个额外的DLL文件, 因此更灵活,但也更复杂更危险。一旦你的ThreadFunc中有错误,远程线程会立即崩溃(看附录F)。调试一个远程的ThreadFunc也是场恶 梦,所以你应该在仅仅注入若干条指令时才使用这个方法。要注入大量的代码还是使用另外两种方法吧。

    再说一次,你可以在文章的开头部分下载到WinSpy,InjectEx和它们的源代码。


    写在最后的话

    最后,我们总结一些目前还没有提到的东西:

    方法 适用的操作系统 可操作的进程进程   
    I. Windows钩子 Win9x 和WinNT 仅限链接了USER32.DLL的进程1   
    II. CreateRemoteThread & LoadLibrary 仅WinNT2 所有进程3,包括系统服务4   
    III. CreateRemoteThread & WriteProcessMemory 近WinNT 所有进程,包括系统服务

    1. 很明显,你不能给一个没有消息队列的线程挂钩。同样SetWindowsHookEx也对系统服务不起作用(就算它们连接了USER32)。
    2. 在Win9x下没有CreateRemoteThread和VirtualAllocEx(事实上可以在9x上模拟它们,但是到目前为止还只是个神话)
   3. 所有进程 = 所有的Win32进程 + csrss.exe
    本地程序(native application)比如smss.exe, os2ss.exe, autochk.exe,不使用Win32 APIs,也没有连接到kernel32.dll。唯一的例外是csrss.exe,win32子系统自身。它是一个本地程序,但是它的一些库(比如 winsrv.dll)需要Win32 DLL包括kernel32.dll.
    4.如果你向注入代码到系统服务或csrss.exe,在打开远程进程的句柄(OpenProcess)之前把你的进程的优先级调整为 “SeDebugprovilege”(AdjustTokenPrivileges)。


    大概就这些了吧。还有一点你需要牢记在心:你注入的代码(特别是存在错误时)很容易就会把目的进程拖垮。记住:责任随权利而来(Power comes with responsibility)!

    这篇文章中的很多例子都和密码有关,看过这篇文章后你可能也会对Zhefu Zhang(译者注:大概是一位中国人,张哲夫??)写的Supper Password Spy++感兴趣。他讲解了如何从IE的密码框中得到密码,也说了如何保护你的密码不被这种攻击。

     最后一点:读者的反馈是文章作者的唯一报酬,所以如果你认为这篇文章有作用,请留下你的评论或给它投票。更重要的是,如果你发现有错误或bug;或你认为 什么地方做得还不够好,有需要改进的地方;或有不清楚的地方也都请告诉我。

感谢
    首先,我要感谢我在CodeGuru(这篇文章最早是在那儿发表的)的读者,正是由于你们的鼓励和支持这篇文章才得以从最初的1200单词发展到今天这样 6000单词的“庞然大物”。如果说有一个人我要特别感谢的话,他就是Rado Picha。这篇文章的一部分很大程度上得益于他对我的建议和帮助。最后,但也不能算是最后,感谢Susan Moore,他帮助我跨越了那个叫做“英语”的雷区,让这篇文章更加通顺达意。
――――――――――――――――――――――――――――――――――――
附录
A) 为什么kernel32.dll和user32.dll中是被映射到相同的内存地址?
我的假定:以为微软的程序员认为这么做可以优化速度。让我们来解释一下这是为什么。
一般来说,一个可执行文件包含几个段,其中一个为“.reloc”段。

当链接器生成EXE或DLL时,它假定这个文件会被加载到一个特定的地址,也就是所谓的假定/首选加载/基地址(assumed /preferred load/base address)。内存映像(image)中的所有绝对地址都时基于该“链接器假定加载地址”的。如果由于某些原因,映像没有加载到这个地址,那么PE加 载器(PE loader)就不得不修正该映像中的所有绝对地址。这就是“.reloc”段存在的原因:它包含了一个该映像中所有的“链接器假定地址”与真正加载到的 地址之间的差异的列表(注意:编译器产生的大部分指令都使用一种相对寻址模式,所以,真正需要重定位[relocation]的地方并没有你想像的那么 多)。如果,从另一方面说,加载器可以把映像加载到链接器首选地址,那么“.reloc”段就会被彻底忽略。

但是,因为每一个Win32程序都需要kernel32.dll,大部分需要user32.dll,所以如果总是把它们两个映射到其首选地址,那么 加载器就不用修正kernel32.dll和user32.dll中的任何(绝对)地址,加载时间就可以缩短。

让我们用下面的例子来结束这个讨论:
把一个APP.exe的加载地址改为kernel32的(/base:"0x77e80000")或 user32的(/base:"0x77e10000")首选地址。如果App.exe没有引入UESE32,就强制LoadLibrary。然后编译 App.exe,并运行它。你会得到一个错误框(“非法的系统DLL重定位”),App.exe无法被加载。

为什么?当一个进程被创建时,Win2000和WinXP的加载器会检查kernel32.dll和user32.dll是否被映射到它们的首选地 址(它们的名称是被硬编码进加载器的),如果没有,就会报错。在WinNT4 中ole32.dll也会被检查。在WinNT3.51或更低版本中,则不会有任何检查,kernel32.dll和user32.dll可以被加载到任 何地方。唯一一个总是被加载到首选地址的模块是ntdll.dll,加载器并不检查它,但是如果它不在它的首选地址,进程根本无法创建。

总结一下:在WinNT4或更高版本的操作系统中:
●总被加载到它们的首选地址的DLL有:kernel32.dll,user32.dll和ntdll.dll。
●Win32程序(连同csrss.exe)中一定存在的DLL:kernel32.dll和ntdll.dll。
●所有进程中都存在的dll:ntdll.dll。

B) /GZ编译开关
在Debug时,/GZ开关默认是打开的。它可以帮你捕捉一些错误(详细内容参考文档)。但是它对我们的可执行文件有什么影响呢?

当/GZ被使用时,编译器会在每个函数,包含函数调用中添加额外的代码(添加到每个函数的最后面)来检查ESP栈指针是否被我们的函数更改过。但 是,等等,ThreadFunc中被添加了一个函数调用?这就是通往灾难的道路。因为,被复制到远程进程中的ThreadFunc将调用一个在远程进程中 不存在的函数。

C) static函数和增量连接(Incremental linking)
增量连接可以缩短连接的时间,在增量编译时,每个函数调用都 是通过一个额外的JMP指令来实现的(一个例外就是被声明为static的函数!)这些JMP允许连接器移动函数在内存中的位置而不用更新调用该函数的 CALL。但是就是这个JMP给我们带来了麻烦:现在ThreadFunc和AfterThreadFunc将指向JMP指令而不是它们的真实代码。所 以,当计算ThreadFunc的大小时:
const int cbCodeSize = ((LPBYTE) AfterThreadFunc - (LPBYTE) ThreadFunc);
你实际得到的将是指向ThreadFunc和AfterThreadFunc的JMP指令之间的“距离”。现在假设我们的ThreadFunc在 004014C0,和其对应的JMP指令在00401020
:00401020   jmp 004014C0
...
:004014C0   push EBP          ; ThreadFunc的真实地址
:004014C1   mov EBP, ESP
...
然后,
WriteProcessMemory( .., &ThreadFunc, cbCodeSize, ..);
将把“JMP 004014C0”和其后的cbCodeSize范围内的代码而不是ThreadFunc复制到远程进程。远程线程首先会执行“JMP 004010C0”,然后一直执行到这个进程代码的最后一条指令(译者注:这当然不是我们想要的结果)。

然而,如果一个函数被声明为static,就算使用增量连接,也不会被替换为JMP指令。这就是为什么我在规则#4中说把ThreadFunc和 AfterThreadFunc声明为static或禁止增量连接的原因了。(关于增量连接的其他方面请参看Matt Pietrek写的“Remove Fatty Deposits from Your Applications Using Our 32-bit Liposuction Tools”)

D) 为什么ThreadFunc只能有4K的局部变量?
局部变量总是保存在栈上的。假设一个函数有256字节的局部变量,当进入该函数时(更确切地说是在functions prologue中),栈指针会被减去256。像下面的函数:
void Dummy(void) {
    BYTE var[256];
    var[0] = 0;
    var[1] = 1;
    var[255] = 255;
}
会被编译为类似下面的指令:
:00401000   push ebp
:00401001   mov ebp, esp
:00401003   sub esp, 00000100           ; change ESP as storage for
                                         ; local variables is needed
:00401006   mov byte ptr [esp], 00      ; var[0] = 0;
:0040100A   mov byte ptr [esp+01], 01   ; var[1] = 1;
:0040100F   mov byte ptr [esp+FF], FF   ; var[255] = 255;
:00401017   mov esp, ebp                ; restore stack pointer
:00401019   pop ebp
:0040101A   ret

请注意在上面的例子中ESP(栈指针)是如何被改变的。但是如果一个函数有多于4K的局部变量该怎么办?这种情况下,栈指针不会被直接改变,而是通 过一个函数调用来正确实现ESP的改变。但是就是这个“函数调用”导致了ThreadFunc的崩溃,因为它在远程进程中的拷贝将会调用一个不存在的函 数。

让我们来看看文档关于栈探针(stack probes)和/Gs编译选项的说明:
“/Gssize选项是一个允许你控制栈探针的高级特性。栈探针是编译器插入到每个函数调用中的一系列代码。当被激活时,栈探针将温和地按照存储函数局部 变量所需要的空间大小来移动

如果一个函数需要大于size指定的局部变量空间,它的栈探针将被激活。默认的size为一个页的大小(在80x86上为4k)。这个值可以使一个 Win32程序和Windows NT的虚拟内存管理程序和谐地交互,在运行期间向程序栈增加已提交的内存总数。

我能确定你们对上面的叙述(“栈探针将温和地按照存储函数局部变量所需要的空间大小来移动”)感到奇怪。这些编译选项(他们的描述!)有时候真的让 人很恼火,特别是当你想真的了解它们是怎么工作的时候。打个比方,如果一个函数需要12kb的空间来存放局部变量,栈上的内存是这样“分配”的
sub    esp, 0x1000    ; 先“分配”4 Kb
test [esp], eax      ; touches memory in order to commit a
                      ; new page (if not already committed)
sub    esp, 0x1000    ; “分配”第二个 4 Kb
test [esp], eax      ; ...
sub    esp, 0x1000
test [esp], eax

注意栈指针是如何以4Kb为单位移动的,更重要的是每移动一步后使用test对栈底的处理(more importantly, how the bottom of the stack is "touched" after each step)。这可以确保了在“分配”下一个页之前,包含栈底的页已经被提交。

继续阅读文档的说明:
“每一个新的线程会拥有(receives)自己的栈空间,这包括已经提交的内存和保留的内存。默认情况下每个线程使 用1MB的保留内存和一个页大小的以提交内存。如果有必要,系统将从保留内存中提交一个页。”(看MSDN中GreateThread > dwStackSize > “Thread Stack Size”)

..现在为什么文档中说“这个值可以使一个Win32程序和Windows NT的虚拟内存管理程序和谐地交互”也很清楚了。

E) 为什么我要把多于3个case分支的swith分割开来呢?
同样,用例子来说明会简单些:
int Dummy( int arg1 )
{
    int ret =0;

    switch( arg1 ) {
    case 1: ret = 1; break;
    case 2: ret = 2; break;
    case 3: ret = 3; break;
    case 4: ret = 0xA0B0; break;
    }
    return ret;
}
将会被编译为类似下面的代码:
Address   OpCode/Params    Decoded instruction
--------------------------------------------------
                                             ; arg1 -> ECX
:00401000 8B4C2404         mov ecx, dword ptr [esp+04]
:00401004 33C0             xor eax, eax     ; EAX = 0
:00401006 49               dec ecx          ; ECX --
:00401007 83F903           cmp ecx, 00000003
:0040100A 771E             ja 0040102A

; JMP to one of the addresses in table ***
; note that ECX contains the offset
:0040100C FF248D2C104000   jmp dword ptr [4*ecx+0040102C]

:00401013 B801000000       mov eax, 00000001   ; case 1: eax = 1;
:00401018 C3               ret
:00401019 B802000000       mov eax, 00000002   ; case 2: eax = 2;
:0040101E C3               ret
:0040101F B803000000       mov eax, 00000003   ; case 3: eax = 3;
:00401024 C3               ret
:00401025 B8B0A00000       mov eax, 0000A0B0   ; case 4: eax = 0xA0B0;
:0040102A C3               ret
:0040102B 90               nop

; 地址表 ***
:0040102C 13104000         DWORD 00401013   ; jump to case 1
:00401030 19104000         DWORD 00401019   ; jump to case 2
:00401034 1F104000         DWORD 0040101F   ; jump to case 3
:00401038 25104000         DWORD 00401025   ; jump to case 4

看到switch-case是如何实现的了吗?
它没有去测试每个case分支,而是创建了一个地址表(address table)。我们简单地计算出在地址表中偏移就可以跳到正确的case分支。想想吧,这真是一个进步,假设你有一个50个分支的switch语句,假如 没有这个技巧,你不的不执行50次CMP和JMP才能到达最后一个case,而使用地址表,你可以通过一次查表即跳到正确的case。使用算法的时间复杂 度来衡量:我们把O(2n)的算法替换成了O(5)的算法,其中:
1. O代表最坏情况下的时间复杂度。
2. 我们假设计算偏移(即查表)并跳到正确的地址需要5个指令。

现在,你可能认为上面的情况仅仅是因为case常量选择得比较好,(1,2,3,4,5)。幸运的是,现实生活中的大多数例子都可以应用这个方案, 只是偏移的计算复杂了一点而已。但是,有两个例外:
●如果少于3个case分支,或
●如果case常量是完全相互无关的。(比如 1, 13, 50, 1000)。
最终的结果和你使用普通的if-else if是一样的。

有趣的地方:如果你曾经为case后面只能跟常量而迷惑的话,现在你应该知道为什么了吧。这个值必须在编译期间就确定下来,这样才能创建地址表。

回到我们的问题!
注意到0040100C处的JMP指令了吗?我们来看看Intel的文档对十六进制操作码FF的说明:
Opcode   Instruction Description
FF /4    JMP r/m32   Jump near, absolute indirect, address given in r/m32

JMP使用了绝对地址!也就是说,它的其中一个操作数(在这里是0040102C)代表一个绝对地址。还用多说吗?现在远程的ThreadFunc 会盲目第在地址表中004101C然后跳到这个错误的地方,马上使远程进程挂掉了。

F) 到底是什么原因使远程进程崩溃了?
如果你的远程进程崩溃了,原因可能为下列之一:
1. 你引用了ThreadFunc中一个不存在的字符串。
2. ThreadFunc中一个或多个指令使用了绝对寻址(看附录E中的例子)
3. ThreadFunc调用了一个不存在的函数(这个函数调用可能是编译器或连接器添加的)。这时候你需要在反汇编器中寻找类似下面的代码:
:004014C0    push EBP         ; entry point of ThreadFunc
:004014C1    mov EBP, ESP
...
:004014C5    call 0041550     ; 在这里崩溃了
                              ; remote process
...
:00401502    ret
如果这个有争议的CALL是编译器添加的(因为一些不该打开的编译开关比如/GZ打开了),它要么在ThreadFunc的开头要么在 ThreadFunc接近结尾的地方

不管在什么情况下,你使用CreateRemoteThread & WriteProcessMemory技术时必须万分的小心,特别是编译器/连接器的设置,它们很可能会给你的ThreadFunc添加一些带来麻烦的东 西。



posted @ 2010-07-06 16:41 codeArt 阅读(1728) | 评论 (0)编辑 收藏

Windows 2000内存篇 分页机制介绍(转)

基本概念

     Windows 2000 使用基于分页机制的虚拟内存。每个进程有4GB的虚拟地址空间。基于分页机制,这4GB地址空间的一些部分被映射了物理内存,一些部分映射硬盘上的交换文 件,一些部分什么也没有映射。程序中使用的都是4GB地址空间中的虚拟地址。而访问物理内存,需要使用物理地址。

    下面我们看看什么是物理地址,什么是虚拟地址。

     物理地址  (physical address): 放在寻址总线上的地址。放在寻址总线上,如果是读,电路根据这个地址每位的值就将相应地址的物理内存中的数据放到数据总线中传输。如果是写,电路根据这个 地址每位的值就将相应地址的物理内存中放入数据总线上的内容。物理内存是以字节(8位)为单位编址的。

     虚拟地址  (virtual address): 4G虚拟地址空间中的地址,程序中使用的都是虚拟地址。

    如果CPU寄存器中的分页标志位被设置,那么执行内存操作的机器指令时,CPU会自动根据页目录和页表中的信息,把虚拟地址转换成物理地址,完成该指令。 比如 mov eax,004227b8h ,这是把地址004227b8h处的值赋给寄存器的汇编代码,004227b8这个地址就是虚拟址。CPU在执行这行代码时,发现寄存器中的分页标志位已 经被设定,就自动完成虚拟地址到物理地址的转换,使用物理地址取出值,完成指令。对于Intel CPU 来说,分页标志位是寄存器CR0的第31位,为1表示使用分页,为0表示不使用分页。对于初始化之后的 Win2k 我们观察CR0 ,发现第31位为1。表明Win2k是使用分页的。

    使用了分页机制之后,4G的地址空间被分成了固定大小的页,每一页或者被映射到物理内存,或者被映射到硬盘上的交换文件中,或者没有映射任何东西。对于一 般程序来说,4G的地址空间,只有一小部分映射了物理内存,大片大片的部分是没有映射任何东西。物理内存也被分页,来映射地址空间。对于32bit的 Win2k,页的大小是4K字节。CPU用来把虚拟地址转换成物理地址的信息存放在叫做页目录和页表的结构里。

    物理内存分页,一个物理页的大小为4K字节,第0个物理页从物理地址 0x00000000 处开始。由于页的大小为4KB,就是0x1000字节,所以第1页从物理地址 0x00001000处开始。第2页从物理地址0x00002000处开始。可以看到由于页的大小是4KB,所以只需要32bit的地址中高20bit来 寻址物理页。

     页表 ,一个页表的大小为4K字节,放在一个物理页 中。由1024个4字节的页表项组成。页表项的大小为4个字节(32bit),所以一个页表中有1024个页表项。页表中的每一项的内容(每项4个字 节,32bit)高20bit用来放一个物理页的物理地址,低12bit放着一些标志。

     页目录 ,一个页目录大小为4K字节,放在一个物理页 中。由1024个4字节的页目录项组成。页目录项的大小为4个字节(32bit),所以一个页目录中有1024个页目录项。页目录中的每一项的内容(每项 4个字节)高20bit用来放一个页表(页表放在一个物理页中)的物理地址,低12bit放着一些标志。 对于x86系统,页目录的物理地址放 在CPU的CR3寄存器中。

     CPU把虚拟地址转换成物理地址:

     一个虚拟地址,大小4个字节(32bit),包含着找到物理地址的信息,分为3个部分:第22位到第31位这10位(最高10位)是页目录中的索引,第 12位到第21位这10位是页表中的索引,第0位到第11位这12位(低12位)是页内偏移。对于一个要转换成物理地址的虚拟地址,CPU首先根据CR3 中的值,找到页目录所在的物理页。然后根据虚拟地址的第22位到第31位这10位(最高的10bit)的值作为索引,找到相应的页目录项 (PDE,page directory entry),页目录项中有这个虚拟地址所对应页表的物理地址。有了页表的物理地址,根据虚拟地址的第12位到第21位这10位的值作为索引,找到该页表 中相应的页表项(PTE,page table entry),页表项中就有这个虚拟地址所对应物理页的物理地址。最后用虚拟地址的最低12位,也就是页内偏移,加上这个物理页的物理地址,就得到了该虚 拟地址所对应的物理地址。

     一个页目录有1024项,虚拟地址最高的10bit刚好可以索引1024项(2的10次方等于1024)。一个页表也有1024项,虚拟地址中间部分的 10bit,刚好索引1024项。虚拟地址最低的12bit(2的12次方等于4096),作为页内偏移,刚好可以索引4KB,也就是一个物理页中的每个 字节。

     一个虚拟地址转换成物理地址的计算过程就是,处理器通过CR3找到当前页目录所在物理页,取虚拟地址的高10bit,然后把这10bit右移2bit(因 为每个页目录项4个字节长,右移2bit相当于乘4)得到在该页中的地址,取出该地址处PDE(4个字节),就找到了该虚拟地址对应页表所在物理页,取虚 拟地址第12位到第21位这10位,然后把这10bit右移2bit(因为每个页表项4个字节长,右移2bit相当于乘4)得到在该页中的地址,取出该地 址处的PTE(4个字节),就找到了该虚拟地址对应物理页的地址,最后加上12bit的页内偏移得到了物理地址。

     32bit的一个指针,可以寻址范围0x00000000-0xFFFFFFFF,4GB大小。也就是说一个32bit的指针可以寻址整个4GB地址空间 的每一个字节。一个页表项负责4K的地址空间和物理内存的映射,一个页表1024项,也就是负责1024*4k=4M的地址空间的映射。一个页目录项,对 应一个页表。一个页目录有1024项,也就对应着1024个页表,每个页表负责4M地址空间的映射。1024个页表负责1024*4M=4G的地址空间映 射。一个进程有一个页目录。所以以页为单位,页目录和页表可以保证4G的地址空间中的每页和物理内存的映射。

     每个进程都有自己的4G地址空间,从0x00000000-0xFFFFFFFF。通过每个进程自己的一套页目录和页表来实现。由于每个进程有自己的页目 录和页表,所以每个进程的地址空间映射的物理内存是不一样的。两个进程的同一个虚拟地址处(如果都有物理内存映射)的值一般是不同的,因为他们往往对应不 同的物理页。

     4G地址空间中低2G,0x00000000-0x7FFFFFFF是用户地址空间,4G地址空间中高2G,
0x80000000-0xFFFFFFFF 是系统地址空间。访问系统地址空间需要程序有ring0的权限。


posted @ 2010-07-06 16:36 codeArt 阅读(161) | 评论 (0)编辑 收藏

用C语言扩展Python的功能

Pyton和C分别有着各自的优缺点,用Python开发程序速度快,可靠性高,并且有许多现成模块可供使用,但执行速度相对较 慢;C语言则正好相反,其执行速度快,但开发效率低。为了充分利用两种语言各自的优点,比较好的做法是用Python开发整个软件框架,而用C语言实现其 关键模块。本文介绍如何利用C语言来扩展Python的功能,并辅以具体的实例讲述如何编写Python的扩展模块。

一、简介

Python是一门功能强大的高级脚本语言,它的强大不仅表现在其自身的功能上,而且还表现在其良好的可扩展性上,正因如 此,Python已经开始受到越来越多人的青睐,并且被屡屡成功地应用于各类大型软件系统的开发过程中。

与其它普通脚本语言有所不同,Python程序员可以借助Python语言提供的API,使用C或者C++来对Python进行功能性 扩展,从而即可以利用Python方便灵活的语法和功能,又可以获得与C或者C++几乎相同的执行性能。执行速度慢是几乎所有脚本语言都具有的共性,也是 倍受人们指责的一个重要因素,Python则通过与C语言的有机结合巧妙地解决了这一问题,从而使脚本语言的应用范围得到了很大扩展。

在用Python开发实际软件系统时,很多时候都需要使用C/C++来对Python进行扩展。最常见的情况是目前已经存在一个用C编 写的库,需要在Python语言中使用该库的某些功能,此时就可以借助Python提供的扩展功能来实现。此外,由于Python从本质上讲还是一种脚本 语言,某些功能用Python实现可能很难满足实际软件系统对执行效率的要求,此时也可以借助Python提供的扩展功能,将这些关键代码段用C或者 C++实现,从而提供程序的执行性能。

本文主要介绍Python提供的C语言扩展接口,以及如何使用这些接口和C/C++语言来对Python进行功能性扩展,并辅以具体的 实例讲述如何实现Python的功能扩展。





回页首


二、Python的C语言接口

Python是用C语言实现的一种脚本语言,本身具有优良的开放性和可扩展性,并提供了方便灵活的应用程序接口(API),从而使得 C/C++程序员能够在各个级别上对Python解释器的功能进行扩展。在使用C/C++对Python进行功能扩展之前,必须首先掌握Python解释 所提供的C语言接口。

2.1 Python对象(PyObject)

Python是一门面向对象的脚本语言,所有的对象在Python解释器中都被表示成PyObject,PyObject结构包含 Python对象的所有成员指针,并且对Python对象的类型信息和引用计数进行维护。在进行Python的扩展编程时,一旦要在C或者C++中对 Python对象进行处理,就意味着要维护一个PyObject结构。

在Python的C语言扩展接口中,大部分函数都有一个或者多个参数为PyObject指针类型,并且返回值也大都为PyObject 指针。

2.2 引用计数

为了简化内存管理,Python通过引用计数机制实现了自动的垃圾回收功能,Python中的每个对象都有一个引用计数,用来计数该对 象在不同场所分别被引用了多少次。每当引用一次Python对象,相应的引用计数就增1,每当消毁一次Python对象,则相应的引用就减1,只有当引用 计数为零时,才真正从内存中删除Python对象。

下面的例子说明了Python解释器如何利用引用计数来对Pyhon对象进行管理:

例1:refcount.py
class refcount:
# etc.
r1 = refcount() # 引用计数为1
r2 = r1 # 引用计数为2
del(r1) # 引用计数为1
del(r2) # 引用计数为0,删除对象

在C/C++中处理Python对象时,对引用计数进行正确的维护是一个关键问题,处理不好将很容易产生内存泄漏。Python的C语 言接口提供了一些宏来对引用计数进行维护,最常见的是用Py_INCREF()来增加使Python对象的引用计数增1,用Py_DECREF()来使 Python对象的引用计数减1。

2.3 数据类型

Python定义了六种数据类型:整型、浮点型、字符串、元组、列表和字典,在使用C语言对Python进行功能扩展时,首先要了解如 何在C和Python的数据类型间进行转化。

2.3.1 整型、浮点型和字符串

在Python的C语言扩展中要用到整型、浮点型和字符串这三种数据类型时相对比较简单,只需要知道如何生成和维护它们就可以了。下面 的例子给出了如何在C语言中使用Python的这三种数据类型:

例2:typeifs.c
// build an integer
PyObject* pInt = Py_BuildValue("i", 2003);
assert(PyInt_Check(pInt));
int i = PyInt_AsLong(pInt);
Py_DECREF(pInt);
// build a float
PyObject* pFloat = Py_BuildValue("f", 3.14f);
assert(PyFloat_Check(pFloat));
float f = PyFloat_AsDouble(pFloat);
Py_DECREF(pFloat);
// build a string
PyObject* pString = Py_BuildValue("s", "Python");
assert(PyString_Check(pString);
int nLen = PyString_Size(pString);
char* s = PyString_AsString(pString);
Py_DECREF(pString);

2.3.2 元组

Python语言中的元组是一个长度固定的数组,当Python解释器调用C语言扩展中的方法时,所有非关键字(non- keyword)参数都以元组方式进行传递。下面的例子示范了如何在C语言中使用Python的元组类型:

例3:typetuple.c
// create the tuple
PyObject* pTuple = PyTuple_New(3);
assert(PyTuple_Check(pTuple));
assert(PyTuple_Size(pTuple) == 3);
// set the item
PyTuple_SetItem(pTuple, 0, Py_BuildValue("i", 2003));
PyTuple_SetItem(pTuple, 1, Py_BuildValue("f", 3.14f));
PyTuple_SetItem(pTuple, 2, Py_BuildValue("s", "Python"));
// parse tuple items
int i;
float f;
char *s;
if (!PyArg_ParseTuple(pTuple, "ifs", &i, &f, &s))
PyErr_SetString(PyExc_TypeError, "invalid parameter");
// cleanup
Py_DECREF(pTuple);

2.3.3 列表

Python语言中的列表是一个长度可变的数组,列表比元组更为灵活,使用列表可以对其存储的Python对象进行随机访问。下面的例 子示范了如何在C语言中使用Python的列表类型:

例4:typelist.c
// create the list
PyObject* pList = PyList_New(3); // new reference
assert(PyList_Check(pList));
// set some initial values
for(int i = 0; i < 3; ++i)
PyList_SetItem(pList, i, Py_BuildValue("i", i));
// insert an item
PyList_Insert(pList, 2, Py_BuildValue("s", "inserted"));
// append an item
PyList_Append(pList, Py_BuildValue("s", "appended"));
// sort the list
PyList_Sort(pList);
// reverse the list
PyList_Reverse(pList);
// fetch and manipulate a list slice
PyObject* pSlice = PyList_GetSlice(pList, 2, 4); // new reference
for(int j = 0; j < PyList_Size(pSlice); ++j) {
PyObject *pValue = PyList_GetItem(pList, j);
assert(pValue);
}
Py_DECREF(pSlice);
// cleanup
Py_DECREF(pList);

2.3.4 字典

Python语言中的字典是一个根据关键字进行访问的数据类型。下面的例子示范了如何在C语言中使用Python的字典类型:

例5:typedic.c
// create the dictionary
PyObject* pDict = PyDict_New(); // new reference
assert(PyDict_Check(pDict));
// add a few named values
PyDict_SetItemString(pDict, "first",
Py_BuildValue("i", 2003));
PyDict_SetItemString(pDict, "second",
Py_BuildValue("f", 3.14f));
// enumerate all named values
PyObject* pKeys = PyDict_Keys(); // new reference
for(int i = 0; i < PyList_Size(pKeys); ++i) {
PyObject *pKey = PyList_GetItem(pKeys, i);
PyObject *pValue = PyDict_GetItem(pDict, pKey);
assert(pValue);
}
Py_DECREF(pKeys);
// remove a named value
PyDict_DelItemString(pDict, "second");
// cleanup
Py_DECREF(pDict);





回页首


三、Python的C语言扩展

3.1 模块封装

在了解了Python的C语言接口后,就可以利用Python解释器提供的这些接口来编写Python的C语言扩展,假设有如下一个C 语言函数:

例6:example.c
int fact(int n)
{
if (n <= 1)
return 1;
else
return n * fact(n - 1);
}

该函数的功能是计算某个给定自然数的阶乘,如果想在Python解释器中调用该函数,则应该首先将其实现为Python中的一个模块, 这需要编写相应的封装接口,如下所示:

例7: wrap.c
#include <Python.h>
PyObject* wrap_fact(PyObject* self, PyObject* args)
{
int n, result;

if (! PyArg_ParseTuple(args, "i:fact", &n))
return NULL;
result = fact(n);
return Py_BuildValue("i", result);
}
static PyMethodDef exampleMethods[] =
{
{"fact", wrap_fact, METH_VARARGS, "Caculate N!"},
{NULL, NULL}
};
void initexample()
{
PyObject* m;
m = Py_InitModule("example", exampleMethods);
}

一个典型的Python扩展模块至少应该包含三个部分:导出函数、方法列表和初始化函数。

3.2 导出函数

要在Python解释器中使用C语言中的某个函数,首先要为其编写相应的导出函数,上述例子中的导出函数为wrap_fact。在 Python的C语言扩展中,所有的导出函数都具有相同的函数原型:

PyObject* method(PyObject* self, PyObject* args);

该函数是Python解释器和C函数进行交互的接口,带有两个参数:self和args。参数self只在C函数被实现为内联方法 (built-in method)时才被用到,通常该参数的值为空(NULL)。参数args中包含了Python解释器要传递给C函数的所有参数,通常使用Python的 C语言扩展接口提供的函数PyArg_ParseTuple()来获得这些参数值。

所有的导出函数都返回一个PyObject指针,如果对应的C函数没有真正的返回值(即返回值类型为void),则应返回一个全局的 None对象(Py_None),并将其引用计数增1,如下所示:

PyObject* method(PyObject *self, PyObject *args) 
{
Py_INCREF(Py_None);
return Py_None;
}

3.3 方法列表

方法列表中给出了所有可以被Python解释器使用的方法,上述例子对应的方法列表为:

static PyMethodDef exampleMethods[] = 
{
{"fact", wrap_fact, METH_VARARGS, "Caculate N!"},
{NULL, NULL}
};

方法列表中的每项由四个部分组成:方法名、导出函数、参数传递方式和方法描述。方法名是从Python解释器中调用该方法时所使用的名 字。参数传递方式则规定了Python向C函数传递参数的具体形式,可选的两种方式是METH_VARARGS和METH_KEYWORDS,其中 METH_VARARGS是参数传递的标准形式,它通过Python的元组在Python解释器和C函数之间传递参数,若采用METH_KEYWORD方 式,则Python解释器和C函数之间将通过Python的字典类型在两者之间进行参数传递。

3.4 初始化函数

所有的Python扩展模块都必须要有一个初始化函数,以便Python解释器能够对模块进行正确的初始化。Python解释器规定所 有的初始化函数的函数名都必须以init开头,并加上模块的名字。对于模块example来说,则相应的初始化函数为:

void initexample() 
{
PyObject* m;
m = Py_InitModule("example", exampleMethods);
}

当Python解释器需要导入该模块时,将根据该模块的名称查找相应的初始化函数,一旦找到则调用该函数进行相应的初始化工作,初始化 函数则通过调用Python的C语言扩展接口所提供的函数Py_InitModule(),来向Python解释器注册该模块中所有可以用到的方法。

3.5 编译链接

要在Python解释器中使用C语言编写的扩展模块,必须将其编译成动态链接库的形式。下面以RedHat Linux 8.0为例,介绍如何将C编写的Python扩展模块编译成动态链接库:

[xiaowp@gary code]$ gcc -fpic -c -I/usr/include/python2.2 \
-I /usr/lib/python2.2/config \
example.c wrapper.c
[xiaowp@gary code]$ gcc -shared -o example.so example.o wrapper.o

3.6 引入Python解释器

当生成Python扩展模块的动态链接库后,就可以在Python解释器中使用该扩展模块了,与Python自带的模块一样,扩展模块 也是通过import命令引入后再使用的,如下所示:

[xiaowp@gary code]$ python
Python 2.2.1 (#1, Aug 30 2002, 12:15:30)
[GCC 3.2 20020822 (Red Hat Linux Rawhide 3.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import example
>>> example.fact(4)
24
>>>





回页首


四、结束语

作为一门功能强大的脚本语言,Python将被更加广泛地应用于各个领域。为了克服脚本语言执行速度慢的问题,Python提供了相应 的C语言扩展接口,通过将影响执行性能的关键代码用C语言实现,可以很大程度上提高用Python编写的脚本在运行时的速度,从而满足实际需要。



参考资料

  1. 可以从Python( http://www.python.org)网站着手 了解所有关于Python的内容。
  2. 可以在Python网站上找到正式的Python C/API文档( http://www.python.org/doc/current/api/api.html)。
  3. 可以在Python网站上找到正式的编写Python扩展模块的文档( http://www.python.org/doc/current/api/api.html)。


关于作者


肖文鹏,是北京理工大学计算机系的一名硕士研究生,主要从事操作系统和分布式计算环境的研究,喜爱Linux和 Python。你可以通过 xiaowp@263.net与他取得联系。


posted @ 2010-07-06 14:03 codeArt 阅读(283) | 评论 (0)编辑 收藏

com的使用例子

1. 创建myCom.dll,该COM只有一个组件,两个接口IGetRes--方法Hello(),
IGetResEx
--方法HelloEx()
2.在工程中导入组件或类型库
   #import 
"组件所在目录\myCom.dll" no_namespace
       或
   #import 
"类型库所在目录\myCom.tlb"
   
using namespace MYCOM;

--Method 1-------------------------------------------------------
   CoInitialize(NULL);
CLSID clsid;
CLSIDFromProgID(OLESTR(
"myCom.GetRes"),&clsid);
   CComPtr
<IGetRes> pGetRes;//智能指针
   pGetRes.CoCreateInstance(clsid);
   pGetRes
->Hello();
   pGetRes.Release();
//小心哦!!请看最后的“注意”
   CoUninitialize();
--Method 2---------------------------------------------------------
   CoInitialize(NULL);
   CLSID clsid;
   HRESULT hr
=CLSIDFromProgID(OLESTR("myCom.GetRes"),&clsid);
   IGetRes 
*ptr;
   hr
=CoCreateInstance(clsid,NULL,CLSCTX_INPROC_SERVER,
                 __uuidof(IGetRes),(LPVOID
*)&ptr);
   ptr
->Hello();
   CoUninitialize();
--Method 3--------------------------------------------------------
   CoInitialize(NULL);
   HRESULT hr;
   CLSID clsid;
   hr
=CLSIDFromProgID(OLESTR("myCom.GetRes"),&clsid);
   IGetRes
* ptr;
   IGetResEx
* ptrEx;

//使用CoCreateClassObject创建一个组件(特别是 mutilThreads)的多个对象的
    时候,效率更高.
   IClassFactory
* p_classfactory;
   hr
=CoGetClassObject(clsid,CLSCTX_INPROC_SERVER,
                      NULL,IID_IClassFactory,
                     (LPVOID
*)&p_classfactory);
   p_classfactory
->CreateInstance(NULL,__uuidof(IGetRes),
                                          (LPVOID
*)&ptr);
   p_classfactory
->CreateInstance(NULL,__uuidof(IGetResEx),
                                          (LPVOID
*)&ptrEx);
   ptr
->Hello();
   ptrEx
->HelloEx();
   CoUninitialize();
--Method 4--------------------------------------------------------
    直接从dll中得到DllGetClassObject,接着生成类对象及类实例(这方法可以
使组件不用在注册表里注册,这是最原始的方法,但这样做没什么意义,至少失去了COM
对用户的透明性),不推荐使用.

typedef HRESULT (__stdcall 
* pfnHello)(REFCLSID,REFIID,void**);
   pfnHello fnHello
= NULL;
   HINSTANCE hdllInst 
= LoadLibrary("组件所在目录\myCom.dll");
   fnHello
=(pfnHello)GetProcAddress(hdllInst,"DllGetClassObject");
   
if (fnHello != 0)
   {
   IClassFactory
* pcf = NULL;
   HRESULT hr
=(fnHello)(CLSID_GetRes,IID_IClassFactory,(void**)&pcf);
   
if (SUCCEEDED(hr) && (pcf != NULL))
   {
   IGetRes
* pGetRes = NULL;
   hr 
= pcf->CreateInstance(NULL, IID_IFoo, (void**)&pGetRes);
   
if (SUCCEEDED(hr) && (pFoo != NULL))
   {
   pGetRes
->Hello();
   pGetRes
->Release();
   }
   pcf
->Release();
   }
   }
   FreeLibrary(hdllInst);
--Method 5-------------------------------------------------------
    通过ClassWizard利用类型库生成包装类,不过前提是com组件的接口必须是派
生自IDispatch,具体方法:
   调出添加类向导(.NET中),选择类型库中MFC类,打开,选择
"文件",选择
"myCom.dll""myCom.tlb", 接下来会出来该myCom中的所有接口,选择你想
生成的接口包装类后,向导会自动生成相应的.h文件.这样你就可以在你的MFC中
像使用普通类那样使用组件了.

   CoInitialize(NULL);
   CGetRes getRest;
   
if (getRest.CreateDispatch("myCom.GetRes"!= 0)
   {
   getRest.Hello();
   getRest.ReleaseDispatch();
   }
   CoUninitialize();
--注意--------------------------------------------------------------
    COM中的智能指针实际上是重载了
->的类,目的是为了简化引用记数,几不需要程序
员显示的调用AddRef()和Release(),但是为什么我们在Method 1中
pGetRes.Release(), 问题在与,我们的智能指针pGetRes生命周期的结束是在
CoUninitialize()之后,CoInitialize所开的套间在 CoUninitialize()后已经被
关闭,而pGetRes此时发生析构,导致了程序的崩溃,解决这个问题的另一个方法是
   CoInitialize(NULL);
CLSID clsid;
CLSIDFromProgID(OLESTR(
"myCom.GetRes"),&clsid);
{
   CComPtr
<IGetRes> pGetRes;//智能指针
   pGetRes.CoCreateInstance(clsid);
   pGetRes
->Hello();
}
   CoUninitialize();
-----------------------------------------------------------------
转自http:
//hi.baidu.com/qxwandy/blog/item/00d116fbfa0d5062024f56a1.html

posted @ 2010-07-06 10:16 codeArt 阅读(454) | 评论 (0)编辑 收藏

windows线程池API


posted @ 2010-07-05 17:54 codeArt 阅读(414) | 评论 (0)编辑 收藏

Windbg 附带的调试工具

Debugging Tools for Windows 工具列表:
名称 描述
agestore.exe 方便的文件删除工具,可以根据最近访问的日期来删除文件。
cdb.exe 命令行的user mode调试器,事实上和NTSD相同。
dbengprx.exe 用于在两台不同机器之间转发数据的轻量级代理服务器。
dbgrpc.exe 用于查询和显示RPC信息的工具。
dbgrpc.exe 用于远程调试的进程服务器。
dumpchk.exe 用于验证内存dump文件的工具。
gflags.exe 用于启用或系统监测的配 置工具。
kd.exe kernel mode调试器。
kdbgctrl.exe 用于控制和配置kernel mode调试连接的工具。
kdsrv.exe 在kernel mode调试过程中使用的连接服务器。
kill.exe 基于命令行的中止进程的工具。
logger.exe 记录进程运行期活动(比如函数调用等)的工具。
logviewer.exe 查看logger.exe生成的日志文件的工具。
ntsd.exe 命令行的user mode调试器,事实上和CDB相同。
remote.exe 用于远程控制命令行程序的工具。
rtlist.exe 远程进程列表查看器。
symchk.exe 用于验证symbol文件或者从symbol服务器上下载symbol文件 的工具。
symstore.exe 用于创建和维护symbol存储的工具。
tlist.exe 列出所有运行中的进程的工具。
umdh.exe 用于内存泄漏检测的工具。
windbg.exe 带GUI界面的user mode和kernel mode的调试器。


posted @ 2010-07-05 17:09 codeArt 阅读(573) | 评论 (0)编辑 收藏

仅列出标题
共3页: 1 2 3 
<2024年11月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

导航

统计

常用链接

留言簿(1)

随笔分类

随笔档案

文章档案

编程与开源

搜索

最新评论

阅读排行榜

评论排行榜