poj 1006 Biorhythms 中国剩余定理

   此题本来模拟即可,但是注意有容易出错的地方。
   这题主要是可以用中国剩余定理来做。
   根据题意可以抽象出这样的模型。给出三个数A,B,C分别是模23,28,33后的余数,求最小的数字
使得其模23,28,33分别为A,B,C,并且要大于给定的数字D。
   中国剩余定理很好的解决了这种余数问题。令模数为Ni,余数为Ai,设Mi = N1*N2*...*Ni-1*Ni+1*...*Nn,
那么答案一定满足形式ans = ΣAi*Mi*(Mi对Ni的乘法逆) % N。(N为所有Ni的乘积)。
   很明显,由于ans的第i项有Mi因子,所以模N1-Ni-1和Ni+1-Nn肯定是0,而Ai*Mi*(Mi对Ni的乘法逆) %Ni
就是Ai。这样就满足了要求。
   代码如下:
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;

int Egcd(int nN, int nM, int& nX, int& nY)
{
    if (nM == 0)
    {
        nX = 1, nY = 0;
        return nN;
    }
    int nRet = Egcd(nM, nN % nM, nX, nY);
    int nT = nX;
    nX = nY;
    nY = nT - (nN / nM) * nY;
    return nRet;
}

int main()
{
    int nA, nB, nC, nD;
    int nDays = 21252;
    int nCase = 1;
    
    while (scanf("%d%d%d%d", &nA, &nB, &nC, &nD),
           nA != -1 || nB != -1 || nC != -1 || nD != -1)
    {
        int nFirst = 0;
        nA %= 23;
        nB %= 28;
        nC %= 33;
        int nM1= 28 * 33, nM2 = 23 * 33, nM3 = 23 * 28;
        int nN1, nN2, nN3, nTemp;
        Egcd(23, nM1, nTemp, nN1);
        Egcd(28, nM2, nTemp, nN2);
        Egcd(33, nM3, nTemp, nN3);
        nFirst = (nA * nM1 * nN1 + nB * nM2 * nN2 + nC * nM3 * nN3) % nDays;
        while (nFirst <= nD)nFirst += nDays;
        printf("Case %d: the next triple peak occurs in %d days.\n",
               nCase++, nFirst - nD);
    }
    
    return 0;
}

posted on 2012-10-03 23:11 yx 阅读(858) 评论(0)  编辑 收藏 引用 所属分类: 数论


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理


<2012年7月>
24252627282930
1234567
891011121314
15161718192021
22232425262728
2930311234

导航

统计

公告

常用链接

留言簿(3)

随笔分类

随笔档案

me

好友

同学

网友

搜索

最新评论

阅读排行榜

评论排行榜