elva

[转载]内存分配 知识,全局,局部,静态变量

内存分配 知识,全局,局部,静态变量

预备知识—程序的内存分配 
一个由C/C++编译的程序占用的内存分为以下几个部分 
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放 
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放 
5、程序代码区—存放函数体的二进制代码。

一个正常的程序在内存中通常分为程序段,数据端和堆栈三部分。程序段里放着程序的机器码和只读数据,这个段通常是只读,对它的写操作是非法的。数据段放的是程序中的静态数据。动态数据则通过堆栈来存放。在内存中,它们的位置如下: 
+------------------+ 内存低端 
| 程序段 | 
|------------------| 
| 数据段 | 
|------------------| 
| 堆栈 | 
+------------------+ 内存高端 
堆栈是内存中的一个连续的块。一个叫堆栈指针的寄存器(SP)指向堆栈的栈顶。堆栈的底部是一个固定地址。堆栈有一个特点就是,后进先出。也就是说,后放入的数据第一个取出。它支持两个操作,PUSH和POP。PUSH是将数据放到栈的顶端,POP是将栈顶的数据取出。
在高级语言中,程序函数调用和函数中的临时变量都用到堆栈。为什么呢?因为在调用一个函数时,我们需要对当前的操作进行保护,也为了函数执行后,程序可以正确的找到地方继续执行,所以参数的传递和返回值也用到了堆栈。通常对局部变量的引用是通过给出它们对SP的偏移量来实现的。另外还有一个基址指针(FP,在Intel芯片中是BP),许多编译器实际上是用它来引用本地变量和参数的。通常,参数的相对FP的偏移是正的,局部变量是负的。 
当程序中发生函数调用时,计算机做如下操作:首先把参数压入堆栈;然后保存指令寄存器(IP)中的内容,做为返回地址(RET);第三个放入堆栈的是基址寄存器(FP);然后把当前的栈指针(SP)拷贝到FP,做为新的基地址;最后为本地变量留出一定空间,把SP减去适当的数值。 

在函数体中定义的变量通常是在栈上,用malloc, calloc, realloc等分配内存的函数分配得到的就是在堆上。在所有函数体外定义的是全局量,加了static修饰符后不管在哪里都存放在全局区(静态区),在所有函数体外定义的static变量表示在该文件中有效,不能extern到别的文件用,在函数体内定义的static表示只在该函数体内有效。另外,函数中的"adgfdf"这样的字符串存放在常量区。

对比:
1 性能
栈:栈存在于RAM中。栈是动态的,它的存储速度是第二快的。stack
堆:堆位于RAM中,是一个通用的内存池。所有的对象都存储在堆中。heap

2 申请方式
stack: 由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间 
heap: 需要程序员自己申请,并指明大小,在c中malloc函数 如p1 = (char *)malloc(10); 
在C++中用new运算符 如p2 = (char *)malloc(10); 但是注意p1、p2本身是在栈中的。

3 申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。 
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时, 
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

4 申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

5 申请效率的比较
栈由系统自动分配,速度较快。但程序员是无法控制的。 
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便. 
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

6 堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。 
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。 
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

7 存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa"; 
char *s2 = "bbbbbbbbbbbbbbbbb"; 
aaaaaaaaaaa是在运行时刻赋值的; 
而bbbbbbbbbbb是在编译时就确定的; 
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。 
比如: 
#include 
void main() 

char a = 1; 
char c[] = "1234567890"; 
char *p ="1234567890"; 
a = c[1]; 
a = p[1]; 
return; 

对应的汇编代码 
10: a = c[1]; 
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh] 
0040106A 88 4D FC mov byte ptr [ebp-4],cl 
11: a = p[1]; 
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h] 
00401070 8A 42 01 mov al,byte ptr [edx+1] 
00401073 88 45 FC mov byte ptr [ebp-4],al 
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。 

小结: 
堆和栈的区别可以用如下的比喻来看出: 
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

全局变量、静态数据、常量存放在全局数据区,所有函数的代码存放在代码区,为运行函数而分配的局部变量、函数参数、返回数据、返回地址等存放在栈区。   
所以在同一个进程里,多个任务(线程)的全局变量和静态变量都应该是共享同一块内存(全局数据区)   
而在不同的进程里,重新加载了代码,各个进程间的全局变量和静态变量当然不是拥有同一块内存。   
在psos下,各个任务是不同的线程,所以各个任务的全局变量和静态变量是在同一块内存。而我的另一个程序中(在sco unix),是每次运行都是一个新的进程,所以各个进程的全局变量和静态变量拥有不同的内存

posted on 2009-10-30 10:56 叶子 阅读(3279) 评论(0)  编辑 收藏 引用 所属分类: C\C++


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理