flyonok

统计

留言簿(8)

ACE

book

boost

bsd

c study

c++

code download

codeblock

computer clound

Eclipse

embed system

erlang

ET++

gtk

ic card

java

KDE

libevent

linux

linux--MM

mysql

network education

one card

oracle

pcap relation

php

powerbuilder

python

QT

software config

software test

SQL server

UML

wireless

wxwidgets

陈宾

阅读排行榜

评论排行榜

epoll describe

Linux-epoll

作者:辛勤耕耘  来源:博客园  发布时间:2009-07-22 16:25  阅读:1143 次  原文链接   [收藏]  
在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。 
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明: 
#define __FD_SETSIZE    1024 
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。 

epoll的接口非常简单,一共就三个函数: 
1. int epoll_create(int size); 
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。 


2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); 
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示: 
EPOLL_CTL_ADD:注册新的fd到epfd中; 
EPOLL_CTL_MOD:修改已经注册的fd的监听事件; 
EPOLL_CTL_DEL:从epfd中删除一个fd; 
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下: 
struct epoll_event { 
  __uint32_t events;  /* Epoll events */ 
  epoll_data_t data;  /* User data variable */ 
}; 

events可以是以下几个宏的集合: 
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭); 
EPOLLOUT:表示对应的文件描述符可以写; 
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来); 
EPOLLERR:表示对应的文件描述符发生错误; 
EPOLLHUP:表示对应的文件描述符被挂断; 
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。 
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里 


3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout); 
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。 

-------------------------------------------------------------------------------------------- 

从man手册中,得到ET和LT的具体描述如下 

EPOLL事件有两种模型: 
Edge Triggered (ET) 
Level Triggered (LT) 

假如有这样一个例子: 
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符 
2. 这个时候从管道的另一端被写入了2KB的数据 
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作 
4. 然后我们读取了1KB的数据 
5. 调用epoll_wait(2)...... 

Edge Triggered 工作模式: 
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。 
   i    基于非阻塞文件句柄 
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。 

Level Triggered 工作模式 
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。 


然后详细解释ET, LT: 

LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表. 

ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。 

在许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试) 



另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后, 
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取: 
while(rs) 

  buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0); 
  if(buflen < 0) 
  { 
    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读 
    // 在这里就当作是该次事件已处理处. 
    if(errno == EAGAIN) 
     break; 
    else 
     return; 
   } 
   else if(buflen == 0) 
   { 
     // 这里表示对端的socket已正常关闭. 
   } 
   if(buflen == sizeof(buf) 
     rs = 1;   // 需要再次读取 
   else 
     rs = 0; 



还有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回-1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法. 

ssize_t socket_send(int sockfd, const char* buffer, size_t buflen) 

  ssize_t tmp; 
  size_t total = buflen; 
  const char *p = buffer; 

  while(1) 
  { 
    tmp = send(sockfd, p, total, 0); 
    if(tmp < 0) 
    { 
      // 当send收到信号时,可以继续写,但这里返回-1. 
      if(errno == EINTR) 
        return -1; 

      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满, 
      // 在这里做延时后再重试. 
      if(errno == EAGAIN) 
      { 
        usleep(1000); 
        continue; 
      } 

      return -1; 
    } 

    if((size_t)tmp == total) 
      return buflen; 

    total -= tmp; 
    p += tmp; 
  } 

  return tmp; 
}
 

epoll有两种模式,Edge Triggered(简称ET) 和 Level Triggered(简称LT).在采用这两种模式时要注意的是,如果采用ET模式,那么仅当状态发生变化时才会通知,而采用LT模式类似于原来的select/poll操作,只要还有没有处理的事件就会一直通知.

以代码来说明问题: 
首先给出server的代码,需要说明的是每次accept的连接,加入可读集的时候采用的都是ET模式,而且接收缓冲区是5字节的,也就是每次只接收5字节的数据:

#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>

using namespace std;

#define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000

void setnonblocking(int sock)
{
    int opts;
    opts=fcntl(sock,F_GETFL);
    if(opts<0)
    {
        perror("fcntl(sock,GETFL)");
        exit(1);
    }
    opts = opts|O_NONBLOCK;
    if(fcntl(sock,F_SETFL,opts)<0)
    {
        perror("fcntl(sock,SETFL,opts)");
        exit(1);
    }   
}

int main()
{
    int i, maxi, listenfd, connfd, sockfd,epfd,nfds;
    ssize_t n;
    char line[MAXLINE];
    socklen_t clilen;
    //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件
    struct epoll_event ev,events[20];
    //生成用于处理accept的epoll专用的文件描述符
    epfd=epoll_create(256);
    struct sockaddr_in clientaddr;
    struct sockaddr_in serveraddr;
    listenfd = socket(AF_INET, SOCK_STREAM, 0);
    //把socket设置为非阻塞方式
    //setnonblocking(listenfd);
    //设置与要处理的事件相关的文件描述符
    ev.data.fd=listenfd;
    //设置要处理的事件类型
    ev.events=EPOLLIN|EPOLLET;
    //ev.events=EPOLLIN;
    //注册epoll事件
    epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
    bzero(&serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET;
    char *local_addr="127.0.0.1";
    inet_aton(local_addr,&(serveraddr.sin_addr));//htons(SERV_PORT);
    serveraddr.sin_port=htons(SERV_PORT);
    bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));
    listen(listenfd, LISTENQ);
    maxi = 0;
    for ( ; ; ) {
        //等待epoll事件的发生
        nfds=epoll_wait(epfd,events,20,500);
        //处理所发生的所有事件     
        for(i=0;i<nfds;++i)
        {
            if(events[i].data.fd==listenfd)
            {
                connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen);
                if(connfd<0){
                    perror("connfd<0");
                    exit(1);
                }
                //setnonblocking(connfd);
                char *str = inet_ntoa(clientaddr.sin_addr);
                cout << "accapt a connection from " << str << endl;
                //设置用于读操作的文件描述符
                ev.data.fd=connfd;
                //设置用于注测的读操作事件
                ev.events=EPOLLIN|EPOLLET;
                //ev.events=EPOLLIN;
                //注册ev
                epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
            }
            else if(events[i].events&EPOLLIN)
            {
                cout << "EPOLLIN" << endl;
                if ( (sockfd = events[i].data.fd) < 0) 
                    continue;
                if ( (n = read(sockfd, line, MAXLINE)) < 0) {
                    if (errno == ECONNRESET) {
                        close(sockfd);
                        events[i].data.fd = -1;
                    } else
                        std::cout<<"readline error"<<std::endl;
                } else if (n == 0) {
                    close(sockfd);
                    events[i].data.fd = -1;
                }
                line[n] = '\0';
                cout << "read " << line << endl;
                //设置用于写操作的文件描述符
                ev.data.fd=sockfd;
                //设置用于注测的写操作事件
                ev.events=EPOLLOUT|EPOLLET;
                //修改sockfd上要处理的事件为EPOLLOUT
                //epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
            }
            else if(events[i].events&EPOLLOUT)
            {   
                sockfd = events[i].data.fd;
                write(sockfd, line, n);
                //设置用于读操作的文件描述符
                ev.data.fd=sockfd;
                //设置用于注测的读操作事件
                ev.events=EPOLLIN|EPOLLET;
                //修改sockfd上要处理的事件为EPOLIN
                epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
            }
        }
    }
    return 0;
}

下面给出测试所用的Perl写的client端,在client中发送10字节的数据,同时让client在发送完数据之后进入死循环, 也就是在发送完之后连接的状态不发生改变--既不再发送数据, 也不关闭连接,这样才能观察出server的状态: 
#!/usr/bin/perl

use IO::Socket;

my $host = "127.0.0.1"; 
my $port = 5000;

my $socket = IO::Socket::INET->new("$host:$port") or die "create socket error $@"; 
my $msg_out = "1234567890"; 
print $socket $msg_out; 
print "now send over, go to sleep\n";

while (1) 

    sleep(1); 

运行server和client发现,server仅仅读取了5字节的数据,而client其实发送了10字节的数据,也就是说,server仅当第一次监听到了EPOLLIN事件,由于没有读取完数据,而且采用的是ET模式,状态在此之后不发生变化,因此server再也接收不到EPOLLIN事件了.

如果我们把client改为这样: 
#!/usr/bin/perl

use IO::Socket;

my $host = "127.0.0.1"; 
my $port = 5000;

my $socket = IO::Socket::INET->new("$host:$port") or die "create socket error $@"; 
my $msg_out = "1234567890"; 
print $socket $msg_out; 
print "now send over, go to sleep\n"; 
sleep(5); 
print "5 second gonesend another line\n"; 
print $socket $msg_out;

while (1) 

    sleep(1); 
}

可以发现,在server接收完5字节的数据之后一直监听不到client的事件,而当client休眠5秒之后重新发送数据,server再次监听到了变化,只不过因为只是读取了5个字节,仍然有10个字节的数据(client第二次发送的数据)没有接收完.

如果上面的实验中,对accept的socket都采用的是LT模式,那么只要还有数据留在buffer中,server就会继续得到通知,读者可以自行改动代码进行实验.

基于这两个实验,可以得出这样的结论:ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包括缓冲区中还有未处理的数据,也就是说,如果要采用ET模式,需要一直read/write直到出错为止,很多人反映为什么采用ET模式只接收了一部分数据就再也得不到通知了,大多因为这样;而LT模式是只要有数据没有处理就会一直通知下去的.

补充说明一下这里一直强调的"状态变化"是什么:

1)对于监听可读事件时,如果是socket是监听socket,那么当有新的主动连接到来为状态发生变化;对一般的socket而言,协议栈中相应的缓 冲区有新的数据为状态发生变化.但是,如果在一个时间同时接收了N个连接(N>1),但是监听socket只accept了一个连接,那么其它未 accept的连接将不会在ET模式下给监听socket发出通知,此时状态不发生变化;对于一般的socket,就如例子中而言,如果对应的缓冲区本身 已经有了N字节的数据,而只取出了小于N字节的数据,那么残存的数据不会造成状态发生变化.

2)对于监听可写事件时,同理可推,不再详述.

而不论是监听可读还是可写,对方关闭socket连接都将造成状态发生变化,比如在例子中,如果强行中断client脚本,也就是主动中断了socket连接,那么都将造成server端发生状态的变化,从而server得到通知,将已经在本方缓冲区中的数据读出.

把前面的描述可以总结如下:仅当对方的动作(发出数据,关闭连接等)造成的事件才能导致状态发生变化,而本方协议栈中已经处理的事件(包括接收了对方的数 据,接收了对方的主动连接请求)并不是造成状态发生变化的必要条件,状态变化一定是对方造成的.所以在ET模式下的,必须一直处理到出错或者完全处理完 毕,才能进行下一个动作,否则可能会发生错误.

另外,从这个例子中,也可以阐述一些基本的网络编程概念.首先,连接的两端中,一端发送成功并不代表着对方上层应用程序接收成功, 就拿上面的client测试程序来说,10字节的数据已经发送成功,但是上层的server并没有调用read读取数据,因此发送成功仅仅说明了数据被对方的协议栈接收存放在了相应的buffer中,而上层的应用程序是否接收了这部分数据不得而知;同样的,读取数据时也只代表着本方协议栈的对应buffer中有数据可读,而此时时候在对端是否在发送数据也不得而知.

epoll为什么这么快


epoll是多路复用IO(I/O Multiplexing)中的一种方式,但是仅用于linux2.6以上内核,在开始讨论这个问题之前,先来解释一下为什么需要多路复用IO.

以一个生活中的例子来解释.

假设你在大学中读书,要等待一个朋友来访,而这个朋友只知道你在A号楼,但是不知道你具体住在哪里,于是你们约好了在A号楼门口见面.

如果你使用的阻塞IO模型来处理这个问题,那么你就只能一直守候在A号楼门口等待朋友的到来,在这段时间里你不能做别的事情,不难知道,这种方式的效率是低下的.

现在时代变化了,开始使用多路复用IO模型来处理这个问题.你告诉你的朋友来了A号楼找楼管大妈,让她告诉你该怎么走.这里的楼管大妈扮演的就是多路复用IO的角色.

进一步解释select和epoll模型的差异.

select版大妈做的是如下的事情:比如同学甲的朋友来了,select版大妈比较笨,她带着朋友挨个房间进行查询谁是同学甲,你等的朋友来了,于是在实际的代码中,select版大妈做的是以下的事情:

int n = select(&readset,NULL,NULL,100);

for (int i = 0; n > 0; ++i) 

   if (FD_ISSET(fdarray[i], &readset)) 
   { 
      do_something(fdarray[i]); 
      --n; 
   } 
}

epoll版大妈就比较先进了,她记下了同学甲的信息,比如说他的房间号,那么等同学甲的朋友到来时,只需要告诉该朋友同学甲在哪个房间即可,不用自己亲自带着人满大楼的找人了.于是epoll版大妈做的事情可以用如下的代码表示: 
n=epoll_wait(epfd,events,20,500); 
for(i=0;i<n;++i) 

    do_something(events[n]); 
}

在epoll中,关键的数据结构epoll_event定义如下: 
typedef union epoll_data { 
                void *ptr; 
                int fd; 
                __uint32_t u32; 
                __uint64_t u64; 
        } epoll_data_t;

        struct epoll_event { 
                __uint32_t events;      /* Epoll events */ 
                epoll_data_t data;      /* User data variable */ 
        }; 
可以看到,epoll_data是一个union结构体,它就是epoll版大妈用于保存同学信息的结构体,它可以保存很多类型的信息:fd,指针,等等.有了这个结构体,epoll大妈可以不用吹灰之力就可以定位到同学甲.

别小看了这些效率的提高,在一个大规模并发的服务器中,轮询IO是最耗时间的操作之一.再回到那个例子中,如果每到来一个朋友楼管大妈都要全楼的查询同学,那么处理的效率必然就低下了,过不久楼底就有不少的人了.

对比最早给出的阻塞IO的处理模型, 可以看到采用了多路复用IO之后, 程序可以自由的进行自己除了IO操作之外的工作, 只有到IO状态发生变化的时候由多路复用IO进行通知, 然后再采取相应的操作, 而不用一直阻塞等待IO状态发生变化了.

从上面的分析也可以看出,epoll比select的提高实际上是一个用空间换时间思想的具体应用.

 

多进程服务器中,epoll的创建应该在创建子进程之后


看我的测试代码,似乎应该是在创建子进程之后创建epoll的fd,否则程序将会有问题,试将代码中两个CreateWorker函数的调用位置分别调用,一个在创建epoll fd之前,一个在之后,在调用在创建之前的代码会出问题,在我的机器上(linux内核2.6.26)表现的症状就是所有进程的epoll_wait函数返回0, 而客户端似乎被阻塞了:

服务器端:

#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/wait.h>

using namespace std;

#define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000

typedef struct task_t
{
    int fd;
    char buffer[100];
    int n;
}task_t;

int CreateWorker(int nWorker)
{
    if (0 < nWorker)
    {
        bool bIsChild;
        pid_t nPid;

        while (!bIsChild)
        {
            if (0 < nWorker)
            {
                nPid = ::fork();
                if (nPid > 0)
                {
                    bIsChild = false;
                    --nWorker;
                }
                else if (0 == nPid)
                {
                    bIsChild = true;
                    printf("create worker %d success!\n", ::getpid());
                }
                else
                {
                    printf("fork error: %s\n", ::strerror(errno));
                    return -1;
                }
            }
            else 
            {
                int nStatus;
                if (-1 == ::wait(&nStatus))
                {
                    ++nWorker;
                }
            }
        }
    }

    return 0;
}

void setnonblocking(int sock)
{
    int opts;
    opts=fcntl(sock,F_GETFL);
    if(opts<0)
    {
        perror("fcntl(sock,GETFL)");
        exit(1);
    }
    opts = opts|O_NONBLOCK;
    if(fcntl(sock,F_SETFL,opts)<0)
    {
        perror("fcntl(sock,SETFL,opts)");
        exit(1);
    }   
}

int main()
{
    int i, maxi, listenfd, connfd, sockfd,epfd,nfds;
    ssize_t n;
    char line[MAXLINE];
    socklen_t clilen;
    struct epoll_event ev,events[20];

    struct sockaddr_in clientaddr;
    struct sockaddr_in serveraddr;
    listenfd = socket(AF_INET, SOCK_STREAM, 0);
       bzero(&serveraddr, sizeof(serveraddr));
    serveraddr.sin_family = AF_INET;
    char *local_addr="127.0.0.1";
    inet_aton(local_addr,&(serveraddr.sin_addr));//htons(SERV_PORT);
    serveraddr.sin_port=htons(SERV_PORT);
      // 地址重用
    int nOptVal = 1;
    socklen_t nOptLen = sizeof(int);
    if (-1 == ::setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &nOptVal, nOptLen))
    {
        return -1;
    }    
    setnonblocking(listenfd);
    bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));
    listen(listenfd, LISTENQ);    
    
    CreateWorker(5);
    
    //把socket设置为非阻塞方式
    
    //生成用于处理accept的epoll专用的文件描述符
    epfd=epoll_create(256);    
    //设置与要处理的事件相关的文件描述符
    ev.data.fd=listenfd;
    //设置要处理的事件类型
    ev.events=EPOLLIN|EPOLLET;
    //ev.events=EPOLLIN;
    //注册epoll事件
    epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
 
     //CreateWorker(5);
     
    maxi = 0;
    
    task_t task; 
    task_t *ptask;
    while(true) 
    {
        //等待epoll事件的发生
        nfds=epoll_wait(epfd,events,20,500);
        //处理所发生的所有事件     
        for(i=0;i<nfds;++i)
        {
            if(events[i].data.fd==listenfd)
            {                
                connfd = accept(listenfd,NULL, NULL);
                if(connfd<0){                    
                    printf("connfd<0, listenfd = %d\n", listenfd);
                    printf("error = %s\n", strerror(errno));
                    exit(1);
                }
                setnonblocking(connfd);
               
                //设置用于读操作的文件描述符
                memset(&task, 0, sizeof(task));
                task.fd = connfd;
                ev.data.ptr = &task;
                //设置用于注册的读操作事件
                ev.events=EPOLLIN|EPOLLET;
                //ev.events=EPOLLIN;
                //注册ev
                epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
            }
            else if(events[i].events&EPOLLIN)
            {
                cout << "EPOLLIN" << endl;
                ptask = (task_t*)events[i].data.ptr;
                sockfd = ptask->fd;
                
                if ( (ptask->n = read(sockfd, ptask->buffer, 100)) < 0) {
                    if (errno == ECONNRESET) {
                        close(sockfd);
                        events[i].data.ptr = NULL;
                    } else
                        std::cout<<"readline error"<<std::endl;
                } else if (ptask->n == 0) {
                    close(sockfd);
                    events[i].data.ptr = NULL;
                }
                ptask->buffer[ptask->n] = '\0';
                cout << "read " << ptask->buffer << endl;
                
                //设置用于写操作的文件描述符                                
                ev.data.ptr = ptask;
                //设置用于注测的写操作事件
                ev.events=EPOLLOUT|EPOLLET;
                                
                //修改sockfd上要处理的事件为EPOLLOUT
                epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
            }
            else if(events[i].events&EPOLLOUT)
            {   
                cout << "EPOLLOUT" << endl;
                ptask = (task_t*)events[i].data.ptr;
                sockfd = ptask->fd;
                
                write(sockfd, ptask->buffer, ptask->n);
                
                //设置用于读操作的文件描述符              
                ev.data.ptr = ptask;
                
                //修改sockfd上要处理的事件为EPOLIN
                epoll_ctl(epfd,EPOLL_CTL_DEL,sockfd,&ev);
                cout << "write " << ptask->buffer;
                memset(ptask, 0, sizeof(*ptask));
                close(sockfd);
            }
        }
    }
    return 0;
}
测试客户端:
#!/usr/bin/perl

use strict;
use Socket;
use IO::Handle;

sub echoclient
{
    my $host = "127.0.0.1";
    my $port = 5000;

    my $protocol = getprotobyname("TCP");
    $host = inet_aton($host);

    socket(SOCK, AF_INET, SOCK_STREAM, $protocol) or die "socket() failed: $!";

    my $dest_addr = sockaddr_in($port, $host);
    connect(SOCK, $dest_addr) or die "connect() failed: $!";

    SOCK->autoflush(1);

    my $msg_out = "hello world\n";
    print "out = ", $msg_out;
    print SOCK $msg_out;
    my $msg_in = <SOCK>;
    print "in = ", $msg_in;

    close SOCK;
}

#&echoclient;
#exit(0);

for (my $i = 0; $i < 9999; $i++)
{
    echoclient;
}

我查看了lighttpd的实现,也是在创建完子进程之后才创建的epoll的fd.

请问谁知道哪里有讲解这个的文档?

假如fd1是由A进程加入epfd的,而且用的是ET模式,那么加入通知的是进程B,显然B进程不会对fd1进行处理,所以以后fd1的事件再不会通知,所以 经过几次循环之后,所有的fd都没有事件通知了,所以epoll_wait在timeout之后就返回0了。而在客户端的结果可想而知,只能是被阻塞。

也就是说, 这是一种发生在epoll fd上面的类似于"惊群"的现象.

posted on 2010-08-25 13:55 flyonok 阅读(436) 评论(0)  编辑 收藏 引用 所属分类: linux


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理