随笔 - 5, 文章 - 0, 评论 - 0, 引用 - 0
数据加载中……

数字根问题(digital root)

Description

The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

Input

The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.

Output

For each integer in the input, output its digital root on a separate line of the output.

Sample Input

24
39
0

Sample Output

6
3


简单来说,  \operatorname{dr}(n) = \begin{cases}0 & \mbox{if}\ n = 0, \\ 9 & \mbox{if}\ n \neq 0,\ n\ \equiv 0\pmod{9},\\ n\ {\rm mod}\ 9 & \mbox{if}\ n \not\equiv 0\pmod{9}.\end{cases}

由于10 \equiv 1\pmod{9}, 故10^k \equiv 1^k \equiv 1\pmod{9}, 所以 \mbox{dr}(abc) \equiv a\cdot 10^2 + b\cdot 10 + c \cdot 1 \equiv a\cdot 1 + b\cdot 1 + c \cdot 1 \equiv a + b + c \pmod{9}

这样这个问题就比较简单了。   (待补充)

posted on 2013-03-07 17:54 gamer67 阅读(338) 评论(0)  编辑 收藏 引用


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理