欧拉函数的应用
#include <stdio.h> #include <math.h>
const int MAX = 32000;
int prime[MAX];
int number[MAX];
int find ( int n ) {
number[0] = number[1] = 1; for ( int i=2; i<=n; i++ ) { number[i] = 0; } for ( int j=2; j<=n; j++ ) { for ( int z=j+j; z<=n; z+=j ) { if ( ! number[z] ) { number[z] = 1; } } } int p = 0; for ( i=0; i<=n; i++ ) { if ( !number[i] ) { prime[p++] = i; } } return p; }
int num[MAX]; int pre;
int f ( int n, int len ) { int l, r, mid; int flag = 1; int n2 = ( int )( sqrt ( (double)n ) ) + 1;
l = 0; r = len - 1; while ( l<=r ) { mid = ( l + r ) / 2; if ( prime[mid] > n2 ) { r = mid - 1; } else { l = mid + 1; } } for ( int i=r; i>=0; i-- ) { if ( ! ( n % prime[i] ) ) { flag = 0; while ( ! ( n % prime[i] ) ) { num[pre++] = prime[i]; n /= prime[i]; } break; } } if ( flag ) { num[pre++] = n; n = 1; } return n; }
int power ( int a, int n ) {
int sum = 1; int count = a;
while ( n ) { if ( n & 1 ) { sum *= count; } n >>= 1; count *= count; } return sum; }
int main () {
int n; int sum, count;
int len = find ( MAX ); while ( scanf ( "%d", &n ) != EOF && n ) { if ( n == 1 ) { printf ( "0\n" ); continue; } pre = 0; while ( n > 1 ) { n = f ( n, len ); } count = 1; sum = 1; for ( int i=0; i<pre-1; i++ ) { if ( num[i] != num[i+1] ) { sum *= (num[i]-1)*power ( num[i], count-1 ); count = 1; } else { count ++; } } sum *= (num[i]-1)*power ( num[i], count-1 );
printf ( "%d\n", sum ); } return 0; }
|
|
| 日 | 一 | 二 | 三 | 四 | 五 | 六 |
---|
29 | 30 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|
公告
决定从线程开始!!
常用链接
留言簿(6)
随笔档案
搜索
最新评论
阅读排行榜
评论排行榜
|
|