让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图,
圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例。我们想求得这样一个线性函数(在n维空间中的线性函数):
g(x)=wx+b
使得所有属于正类的点x+代入以后有g(x+)≥1,而所有属于负类的点x-代入后有g(x-)≤-1(之所以总跟1比较,无论正一还是负一,都是因为我们固定了间隔为1,注意间隔和几何间隔的区别)。代入g(x)后的值如果在1和-1之间,我们就拒绝判断。
求这样的g(x)的过程就是求w(一个n维向量)和b(一个实数)两个参数的过程(但实际上只需要求w,求得以后找某些样本点代入就可以求得b)。因此在求g(x)的时候,w才是变量。
你肯定能看出来,一旦求出了w(也就求出了b),那么中间的直线H就知道了(因为它就是wx+b=0嘛,哈哈),那么H1和H2也就知道了(因为三者是平行的,而且相隔的距离还是||w||决定的)。那么w是谁决定的?显然是你给的样本决定的,一旦你在空间中给出了那些个样本点,三条直线的位置实际上就唯一确定了(因为我们求的是最优的那三条,当然是唯一的),我们解优化问题的过程也只不过是把这个确定了的东西算出来而已。
样本确定了w,用数学的语言描述,就是w可以表示为样本的某种组合:
w=α1x1+α2x2+…+αnxn
式子中的αi是一个一个的数(在严格的证明过程中,这些α被称为拉格朗日乘子),而xi是样本点,因而是向量,n就是总样本点的个数。为了方便描述,以下开始严格区别数字与向量的乘积和向量间的乘积,我会用α1x1表示数字和向量的乘积,而用<x1,x2>表示向量x1,x2的内积(也叫点积,注意与向量叉积的区别)。因此g(x)的表达式严格的形式应该是:
g(x)=<w,x>+b
但是上面的式子还不够好,你回头看看图中正样本和负样本的位置,想像一下,我不动所有点的位置,而只是把其中一个正样本点定为负样本点(也就是把一个点的形状从圆形变为方形),结果怎么样?三条直线都必须移动(因为对这三条直线的要求是必须把方形和圆形的点正确分开)!这说明w不仅跟样本点的位置有关,还跟样本的类别有关(也就是和样本的“标签”有关)。因此用下面这个式子表示才算完整:
w=α1y1x1+α2y2x2+…+αnynxn (式1)
其中的yi就是第i个样本的标签,它等于1或者-1。其实以上式子的那一堆拉格朗日乘子中,只有很少的一部分不等于0(不等于0才对w起决定作用),这部分不等于0的拉格朗日乘子后面所乘的样本点,其实都落在H1和H2上,也正是这部分样本(而不需要全部样本)唯一的确定了分类函数,当然,更严格的说,这些样本的一部分就可以确定,因为例如确定一条直线,只需要两个点就可以,即便有三五个都落在上面,我们也不是全都需要。这部分我们真正需要的样本点,就叫做支持(撑)向量!(名字还挺形象吧,他们“撑”起了分界线)
式子也可以用求和符号简写一下:
因此原来的g(x)表达式可以写为:
注意式子中x才是变量,也就是你要分类哪篇文档,就把该文档的向量表示代入到 x的位置,而所有的xi统统都是已知的样本。还注意到式子中只有xi和x是向量,因此一部分可以从内积符号中拿出来,得到g(x)的式子为:
发现了什么?w不见啦!从求w变成了求α。
但肯定有人会说,这并没有把原问题简化呀。嘿嘿,其实简化了,只不过在你看不见的地方,以这样的形式描述问题以后,我们的优化问题少了很大一部分不等式约束(记得这是我们解不了极值问题的万恶之源)。但是接下来先跳过线性分类器求解的部分,来看看 SVM在线性分类器上所做的重大改进——核函数。
生存?还是毁灭?——哈姆雷特
可分?还是不可分?——支持向量机
之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理。如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使得它的适用范围大大缩小,而它的很多优点我们实在不原意放弃,怎么办呢?是否有某种方法,让线性不可分的数据变得线性可分呢?
有!其思想说来也简单,来用一个二维平面中的分类问题作例子,你一看就会明白。事先声明,下面这个例子是网络早就有的,我一时找不到原作者的正确信息,在此借用,并加进了我自己的解说而已。
例子是下面这张图:
我们把横轴上端点a和b之间红色部分里的所有点定为正类,两边的黑色部分里的点定为负类。试问能找到一个线性函数把两类正确分开么?不能,因为二维空间里的线性函数就是指直线,显然找不到符合条件的直线。
但我们可以找到一条曲线,例如下面这一条:
显然通过点在这条曲线的上方还是下方就可以判断点所属的类别(你在横轴上随便找一点,算算这一点的函数值,会发现负类的点函数值一定比0大,而正类的一定比0小)。这条曲线就是我们熟知的二次曲线,它的函数表达式可以写为:
问题只是它不是一个线性函数,但是,下面要注意看了,新建一个向量y和a:
这样g(x)就可以转化为f(y)=<a,y>,你可以把y和a分别回带一下,看看等不等于原来的g(x)。用内积的形式写你可能看不太清楚,实际上f(y)的形式就是:
g(x)=f(y)=ay
在任意维度的空间中,这种形式的函数都是一个线性函数(只不过其中的a和y都是多维向量罢了),因为自变量y的次数不大于1。
看出妙在哪了么?原来在二维空间中一个线性不可分的问题,映射到四维空间后,变成了线性可分的!因此这也形成了我们最初想解决线性不可分问题的基本思路——向高维空间转化,使其变得线性可分。
而转化最关键的部分就在于找到x到y的映射方法。遗憾的是,如何找到这个映射,没有系统性的方法(也就是说,纯靠猜和凑)。具体到我们的文本分类问题,文本被表示为上千维的向量,即使维数已经如此之高,也常常是线性不可分的,还要向更高的空间转化。其中的难度可想而知。
小Tips:为什么说f(y)=ay是四维空间里的函数?
大家可能一时没看明白。回想一下我们二维空间里的函数定义
g(x)=ax+b
变量x是一维的,为什么说它是二维空间里的函数呢?因为还有一个变量我们没写出来,它的完整形式其实是
y=g(x)=ax+b
即
y=ax+b
看看,有几个变量?两个。那是几维空间的函数?(作者五岁的弟弟答:五维的。作者:……)
再看看
f(y)=ay
里面的y是三维的变量,那f(y)是几维空间里的函数?(作者五岁的弟弟答:还是五维的。作者:……)
用一个具体文本分类的例子来看看这种向高维空间映射从而分类的方法如何运作,想象一下,我们文本分类问题的原始空间是1000维的(即每个要被分类的文档被表示为一个1000维的向量),在这个维度上问题是线性不可分的。现在我们有一个2000维空间里的线性函数
f(x’)=<w’,x’>+b
注意向量的右上角有个 ’哦。它能够将原问题变得可分。式中的 w’和x’都是2000维的向量,只不过w’是定值,而x’是变量(好吧,严格说来这个函数是2001维的,哈哈),现在我们的输入呢,是一个1000维的向量x,分类的过程是先把x变换为2000维的向量x’,然后求这个变换后的向量x’与向量w’的内积,再把这个内积的值和b相加,就得到了结果,看结果大于阈值还是小于阈值就得到了分类结果。
你发现了什么?我们其实只关心那个高维空间里内积的值,那个值算出来了,分类结果就算出来了。而从理论上说, x’是经由x变换来的,因此广义上可以把它叫做x的函数(有一个x,就确定了一个x’,对吧,确定不出第二个),而w’是常量,它是一个低维空间里的常量w经过变换得到的,所以给了一个w 和x的值,就有一个确定的f(x’)值与其对应。这让我们幻想,是否能有这样一种函数K(w,x),他接受低维空间的输入值,却能算出高维空间的内积值<w’,x’>?
如果有这样的函数,那么当给了一个低维空间的输入x以后,
g(x)=K(w,x)+b
f(x’)=<w’,x’>+b
这两个函数的计算结果就完全一样,我们也就用不着费力找那个映射关系,直接拿低维的输入往g(x)里面代就可以了(再次提醒,这回的g(x)就不是线性函数啦,因为你不能保证K(w,x)这个表达式里的x次数不高于1哦)。
万幸的是,这样的K(w,x)确实存在(发现凡是我们人类能解决的问题,大都是巧得不能再巧,特殊得不能再特殊的问题,总是恰好有些能投机取巧的地方才能解决,由此感到人类的渺小),它被称作核函数(核,kernel),而且还不止一个,事实上,只要是满足了Mercer条件的函数,都可以作为核函数。核函数的基本作用就是接受两个低维空间里的向量,能够计算出经过某个变换后在高维空间里的向量内积值。几个比较常用的核函数,俄,教课书里都列过,我就不敲了(懒!)。
回想我们上节说的求一个线性分类器,它的形式应该是:
现在这个就是高维空间里的线性函数(为了区别低维和高维空间里的函数和向量,我改了函数的名字,并且给w和x都加上了 ’),我们就可以用一个低维空间里的函数(再一次的,这个低维空间里的函数就不再是线性的啦)来代替,
又发现什么了?f(x’) 和g(x)里的α,y,b全都是一样一样的!这就是说,尽管给的问题是线性不可分的,但是我们就硬当它是线性问题来求解,只不过求解过程中,凡是要求内积的时候就用你选定的核函数来算。这样求出来的α再和你选定的核函数一组合,就得到分类器啦!
明白了以上这些,会自然的问接下来两个问题:
1. 既然有很多的核函数,针对具体问题该怎么选择?
2. 如果使用核函数向高维空间映射后,问题仍然是线性不可分的,那怎么办?
第一个问题现在就可以回答你:对核函数的选择,现在还缺乏指导原则!各种实验的观察结果(不光是文本分类)的确表明,某些问题用某些核函数效果很好,用另一些就很差,但是一般来讲,径向基核函数是不会出太大偏差的一种,首选。(我做文本分类系统的时候,使用径向基核函数,没有参数调优的情况下,绝大部分类别的准确和召回都在85%以上,可见。虽然libSVM的作者林智仁认为文本分类用线性核函数效果更佳,待考证)
对第二个问题的解决则引出了我们下一节的主题:松弛变量。