// win32console.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>
#include <vector>
using namespace std;

 /**//* START: Fig02_05.txt */
 /**//**
* Cubic maximum contiguous subsequence sum algorithm.
*/
int maxSubSum1( const vector<int> & a )
  {
 /**//* 1*/ int maxSum = 0;

 /**//* 2*/ for( int i = 0; i < a.size( ); i++ )
 /**//* 3*/ for( int j = i; j < a.size( ); j++ )
 {
 /**//* 4*/ int thisSum = 0;

 /**//* 5*/ for( int k = i; k <= j; k++ )
 /**//* 6*/ thisSum += a[ k ];

 /**//* 7*/ if( thisSum > maxSum )
 /**//* 8*/ maxSum = thisSum;
}

 /**//* 9*/ return maxSum;
}
 /**//* END */
int test(vector<int> & a)
  {
int sz = a.size();
int maxN = 0;
for (int i = 0; i < sz; i++)
 {
for (int j = i; j < sz; j++)
 {
int thisN = 0;
for (int k = i; k <= j; k++)
thisN += a[k];
if (thisN > maxN)
maxN = thisN;
}
}
return maxN;
}


 /**//* START: Fig02_06.txt */
 /**//**
* Quadratic maximum contiguous subsequence sum algorithm.
*/
int maxSubSum2( const vector<int> & a )
  {
 /**//* 1*/ int maxSum = 0;

 /**//* 2*/ for( int i = 0; i < a.size( ); i++ )
 {
 /**//* 3*/ int thisSum = 0;
 /**//* 4*/ for( int j = i; j < a.size( ); j++ )
 {
 /**//* 5*/ thisSum += a[ j ];

 /**//* 6*/ if( thisSum > maxSum )
 /**//* 7*/ maxSum = thisSum;
}
}

 /**//* 8*/ return maxSum;
}
 /**//* END */

 /**//**
* Return maximum of three integers.
*/
int max3( int a, int b, int c )
  {
return a > b ? a > c ? a : c : b > c ? b : c;
}

 /**//* START: Fig02_07.txt */
 /**//**
* Recursive maximum contiguous subsequence sum algorithm.
* Finds maximum sum in subarray spanning a[left..right].
* Does not attempt to maintain actual best sequence.
*/
int maxSumRec( const vector<int> & a, int left, int right )
  {
 /**//* 1*/ if( left == right ) // Base case
 /**//* 2*/ if( a[ left ] > 0 )
 /**//* 3*/ return a[ left ];
else
 /**//* 4*/ return 0;

 /**//* 5*/ int center = ( left + right ) / 2;
 /**//* 6*/ int maxLeftSum = maxSumRec( a, left, center );
 /**//* 7*/ int maxRightSum = maxSumRec( a, center + 1, right );

 /**//* 8*/ int maxLeftBorderSum = 0, leftBorderSum = 0;
 /**//* 9*/ for( int i = center; i >= left; i-- )
 {
 /**//*10*/ leftBorderSum += a[ i ];
 /**//*11*/ if( leftBorderSum > maxLeftBorderSum )
 /**//*12*/ maxLeftBorderSum = leftBorderSum;
}

 /**//*13*/ int maxRightBorderSum = 0, rightBorderSum = 0;
 /**//*14*/ for( int j = center + 1; j <= right; j++ )
 {
 /**//*15*/ rightBorderSum += a[ j ];
 /**//*16*/ if( rightBorderSum > maxRightBorderSum )
 /**//*17*/ maxRightBorderSum = rightBorderSum;
}

 /**//*18*/ return max3( maxLeftSum, maxRightSum,
 /**//*19*/ maxLeftBorderSum + maxRightBorderSum );
}

 /**//**
* Driver for divide-and-conquer maximum contiguous
* subsequence sum algorithm.
*/
int maxSubSum3( const vector<int> & a )
  {
return maxSumRec( a, 0, a.size( ) - 1 );
}
 /**//* END */


 /**//* START: Fig02_08.txt */
 /**//**
* Linear-time maximum contiguous subsequence sum algorithm.
*/
int maxSubSum4( const vector<int> & a )
  {
 /**//* 1*/ int maxSum = 0, thisSum = 0;

 /**//* 2*/ for( int j = 0; j < a.size( ); j++ )
 {
 /**//* 3*/ thisSum += a[ j ];

 /**//* 4*/ if( thisSum > maxSum )
 /**//* 5*/ maxSum = thisSum;
 /**//* 6*/ else if( thisSum < 0 )
 /**//* 7*/ thisSum = 0;
}

 /**//* 8*/ return maxSum;
}
 /**//* END */

 /**//**
* Simple test program.
*/

int _tmain(int argc, _TCHAR* argv[])
  {
vector<int> a( 8 );
a[ 0 ] = 4; a[ 1 ] = -3; a[ 2 ] = 5; a[ 3 ] = -2;
a[ 4 ] = -1; a[ 5 ] = 2; a[ 6 ] = 6; a[ 7 ] = -2;
int maxSum;

maxSum = maxSubSum1( a );
cout << "Max sum is " << maxSum << endl;
maxSum = maxSubSum2( a );
cout << "Max sum is " << maxSum << endl;
maxSum = maxSubSum3( a );
cout << "Max sum is " << maxSum << endl;
maxSum = maxSubSum4( a );
cout << "Max sum is " << maxSum << endl;

system("pause");
return 0;
}


|