name:example2_3.cpp
// alias:aesthetic version
#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
using namespace std;
void main(void)
{
typedef vector<int> int_vector;
typedef istream_iterator<int> istream_itr;
typedef ostream_iterator<int> ostream_itr;
typedef back_insert_iterator< int_vector > back_ins_itr;
// STL中的vector容器
int_vector num;
// 从标准输入设备读入整数,
// 直到输入的是非整型数据为止
copy(istream_itr(cin), istream_itr(), back_ins_itr(num));
// STL中的排序算法
sort(num.begin(), num.end());
// 将排序结果输出到标准输出设备
copy(num.begin(), num.end(), ostream_itr(cout, "\n"));
}
在这个程序里几乎每行代码都是和STL有关的(除了main和那对花括号,当然还有注释),并且它包含了STL中几乎所有的各大部件(容器container,迭代器iterator, 算法algorithm, 适配器adaptor),唯一的遗憾是少了函数对象(functor)的身影。
前面提到的迭代器可以对容器内的任意元素进行定位和访问。在STL里,这种特性被加以推广了。一个cin代表了来自输入设备的一段数据流,从概念上讲它对数据流的访问功能类似于一般意义上的迭代器,但是C++中的cin在很多地方操作起来并不像是一个迭代器,原因就在于其接口和迭代器的接口不一致(比如:不能对cin进行++运算,也不能对之进行取值运算--即*运算)。为了解决这个矛盾,就需要引入适配器的概念。istream_iterator便是一个适配器,它将cin进行包装,使之看起来像是一个普通的迭代器,这样我们就可以将之作为实参传给一些算法了(比如这里的copy算法)。因为算法只认得迭代器,而不会接受cin。对于上面程序中的第一个copy函数而言,其第一个参数展开后的形式是:istream_iterator(cin),其第二个参数展开后的形式是:istream_iterator()(如果你对typedef的语法不清楚,可以参考有关的c++语言书籍)。其效果是产生两个迭代器的临时对象,前一个指向整型输入数据流的开始,后一个则指向"pass-the-end value"。这个函数的作用就是将整型输入数据流从头至尾逐一"拷贝"到vector这个准整型数组里,第一个迭代器从开始位置每次累进,最后到达第二个迭代器所指向的位置。或许你要问,如果那个copy函数的行为真如我所说的那样,为什么不写成如下这个样子呢?
copy(istream_iterator<int>(cin), istream_iterator<int>(), num.begin());
你确实可以这么做,但是有一个小小的麻烦。还记得第一版程序里的那个数组越界问题吗?如果你这么写的话,就会遇到类似的麻烦。原因在于copy函数在"拷贝"数据的时候,如果输入的数据个数超过了vector容器的范围时,数据将会拷贝到容器的外面。此时,容器不会自动增长容量,因为这只是简单地拷贝,并不是从末端插入。为了解决这个问题,另一个适配器back_insert_iterator登场了,它的作用就是引导copy算法每次在容器末端插入一个数据。程序中的那个back_ins_itr(num)展开后就是:back_insert_iterator(num),其效果是生成一个这样的迭待器对象。
终于将讲完了三分之一(真不容易!),好在第二句和前一版程序没有差别,这里就略过了。至于第三句,ostream_itr(cout, "\n")展开后的形式是:ostream_iterator(cout, "\n"),其效果是产生一个处理输出数据流的迭待器对象,其位置指向数据流的起始处,并且以"\n"作为分割符。第二个copy函数将会从头至尾将vector中的内容"拷贝"到输出设备,第一个参数所代表的迭代器将会从开始位置每次累进,最后到达第二个参数所代表的迭代器所指向的位置。
这就是全部的内容。