poj3259

Wormholes

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 16899 Accepted: 5961

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES
这个题跟poj1860,poj2240本质是一样的,都是求有无负权回路
构图时候把每个虫洞的边的边值w存为-w,注意普通路径是双向边
bellford求负权回路原理:如果无向图边上存在负权回路,则回路边上的边(u,v)的d[v]值一定小于d[u]+w[u,v]。
如果写spfa的话,记下每个节点的入队次数,如果某个节点的入队次数超过n次的话,就说明存在负权回路
其实我是各种不明白……
 1#include<stdio.h>
 2#include<string.h>
 3#include<math.h>
 4#define MAX 30000
 5struct node
 6{
 7    int h1,t1,len;
 8}
;
 9struct node bb[MAX+5];
10int s,d[1000];
11int n,m,w;
12void init()
13{
14    int a,b,c;
15    int i;
16    s=0;
17    memset(bb,0,sizeof(bb));
18    scanf("%d%d%d",&n,&m,&w);
19    for (i=1; i<=m ; i++ )
20    {
21        scanf("%d%d%d",&a,&b,&c);
22        s++;
23        bb[s].h1=a;
24        bb[s].t1=b;
25        bb[s].len=c;
26        s++;
27        bb[s].h1=b;
28        bb[s].t1=a;
29        bb[s].len=c;
30    }

31    for (i=1; i<=w ; i++ )
32    {
33        scanf("%d%d%d",&a,&b,&c);
34        s++;
35        bb[s].h1=a;
36        bb[s].t1=b;
37        bb[s].len=-c;
38    }

39}

40void bellman_ford()
41{
42    int i,j,flag;
43    memset(d,0,sizeof(d));
44    for (i=1; i<=n; i++)
45    {
46        flag=0;
47        for (j=1; j<=s; j++)
48            if (d[bb[j].h1]+bb[j].len<d[bb[j].t1])
49            {
50                d[bb[j].t1]=d[bb[j].h1]+bb[j].len;
51            }

52    }

53    //////找有无负权回路
54    for (i=1; i<=s ; i++ )
55        if (d[bb[i].h1]+bb[i].len<d[bb[i].t1])
56        {
57            printf("YES\n");
58            return;
59        }

60    printf("NO\n");
61}

62int main()
63{
64    int t;
65    scanf("%d",&t);
66    while (t>0)
67    {
68        init();
69        bellman_ford();
70        t--;
71    }

72    return 0;
73}

74

posted on 2012-02-13 23:15 jh818012 阅读(305) 评论(0)  编辑 收藏 引用


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


<2024年11月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

导航

统计

常用链接

留言簿

文章档案(85)

搜索

最新评论