poj1201

Intervals

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 15733 Accepted: 5871

Description

You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.

Input

The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6
这题最多可能有5w的点,但是给的边数有5w
而且要注意的是 对每个区间[i-1,i]都有>=0 <=1的条件
如果直接建图的话,边数可能有15w
所以时间上bellman_ford 可能很难承受
所有要优化
对于那些默认的条件,显然我们可以不用把这些边加进去,
在每次判断时候,判断一边即可
对于bellman_ford 还有优化是,如果一次循环中没有修改任何值,则说明bellman_ford已经得到解了,
没必要继续执行了 直接推出就行了
目标是求dist[mx]-dist[mn]
#include<algorithm>
#include
<iostream>
#include
<cstring>
#include
<cstdio>
#include
<cstdlib>
#include
<string>
#include
<cmath>
using namespace std;
#define inf 0x7ffffff
#define max 50004
struct node 
{
    
int u,v,w;
}
edge[max];
int n,dist[max],mn,mx;
void init()
{
    
int i;
    
for(i=0;i<max;i++) dist[i]=0;
    mx
=1;mn=inf;
}

void bellman_ford()
{
    
int k,t;
    
bool flag=true;
    
while(flag)
    
{
        flag
=false;
        
for(k=0;k<n;k++)
        
{
            t
=dist[edge[k].u]+edge[k].w;
            
if (dist[edge[k].v]>t)
            
{
                dist[edge[k].v]
=t;
                flag
=true;
            }

        }

        
for(k=mn;k<mx;k++)
        
{
            t
=dist[k-1]+1;
            
if (dist[k]>t)
            
{
                dist[k]
=t;
                flag
=true;
            }

        }

        
for(k=mn;k<mx;k++)
        
{
            
if (dist[k-1]>dist[k])
            
{
                dist[k
-1]=dist[k];
                flag
=true;
            }

        }

    }

}

int main()
{
    
int i,u,v,w;
    
while (scanf("%d",&n)!=EOF)
    
{
        
for(i=0;i<n;i++)
        
{
            scanf(
"%d%d%d",&u,&v,&w);
            edge[i].u
=v;
            edge[i].v
=u-1;
            edge[i].w
=-w;
            
if (u<mn)
            
{
                mn
=u;
            }

            
if (v>mx)
            
{
                mx
=v;
            }

        }

        bellman_ford();
        printf(
"%d\n",dist[mx]-dist[mn-1]);
    }

    
return 0;
}

posted on 2012-04-03 17:38 jh818012 阅读(173) 评论(0)  编辑 收藏 引用


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


<2024年11月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

导航

统计

常用链接

留言簿

文章档案(85)

搜索

最新评论