金庆的专栏

  C++博客 :: 首页 :: 新随笔 :: 联系 :: 聚合  :: 管理 ::
  423 随笔 :: 0 文章 :: 454 评论 :: 0 Trackbacks
MongoDb 用 mapreduce 统计留存率

(金庆的专栏)

留存的定义采用的是
新增账号第X日:某日新增的账号中,在新增日后第X日有登录行为记为留存

输出如下:(类同友盟的留存率显示)
留存用户
注册时间    新增用户  留存率
                      1天后   2天后   3天后   4天后   5天后  6天后  7天后  14天后  30天后
2015-09-17  2300      20.7 %  15.6 %  13 %    11.3 %  9.9 %               
2015-09-18  2694      21.8 %  14.8 %  11.5 %  10.5 %                  
2015-09-19  3325      19 %    11.4 %  10.3 %                      
2015-09-20  3093      16.2 %  11.9 %                          
2015-09-21  2303      20.5 %                              


服务器记录新建帐号到 retention.register 集合,
每日记录帐号登录到 retention.login 集合,
每日运行统计脚本,统计前一天的留存率。

以下为 mongoDB 留存率相关的集合,
除了 retention.register 和 retention.login 由服务器代码写入,
其他集合都是由统计脚本生成。

retention.register
========================
留存率统计用,新建帐号。
记录新建帐号的创建日期。
有以下字段:
platform, 平台名
account_id, 帐号
date, 注册日期,字符串,格式:“2015-01-01”
例如: {platform: "baidu", account_id: "jinqing", date: "2015-09-20"}
索引 (platform, account_id), (date)
用于统计每日新增帐号数。

retention.login
==================
留存率统计用,帐号登录记录。
有以下字段:
date, 登录日期
platform, 平台名
account_id, 帐号
register_date, 帐号注册日期
例如:{date: "2015-09-23", platform: "baidu", account_id: "jinqing", register_date: "2015-09-20"}
索引 (date, platform, account_id).

retention.result
===================
留存率结果。例如:
{date : "2015-09-01", register : 3344, 1 : 91.1, 2 : 82.2, 3 : 73.3, 4 : 64.4, 5 : 55.5, 6 : 46.6, 7 : 37.7, 14 : 14.0, 30 : 3.33}
{date : "2015-09-02", register : 3344, 1 : 91.1, 2 : 82.2, 3 : 73.3, 4 : 64.4, 5 : 55.5, 6 : 46.6, 7 : 37.7, 14 : 14.0, 30 : 3.33}
可用 mongoexport 导出为 csv 表格文件。
例如:
D:\mongodb\bin>mongoexport -h localhost -d mydb -c retention.result -f date,register,1,2,3,4,5,6,7,14,30 --csv -o d:\temp\retention.csv
其中
date: 注册日期
register: 新注册个数
1,2,...7,14,30: 第1日,2日,... 7日,14日,30日留存百分率


留存率统计脚本
--------------
linux下用crontab,
windows下用定时任务,
每日凌晨 00:30 运行统计脚本。

允许隔了几天没运行,运行时将从上次运行处一直统计到当天。
如果是首次运行,则从 retention.register 集合的最早日期开始统计。
一天运行多次也不会影响结果。
但是不能同时运行多个实例。

需 mongo 客户端。
可在 mongo 主机上运行。

mongo my.mongo.host retention.js
生成结果在 mydb.retention.result 集合中,可用 mongoexport 导出为 csv 文件。


#!/bin/sh
# retention.sh
# 每日凌晨定时执行,统计留存率。
# 需 mongo 客户端。

# 以下需更改为实际目录, 将在该目录下运行。
cd 
/home/jinq/retention/

# 以下地址应该改为 mongod 服务器地址。
MONGODB
=192.168.8.9

mongo ${MONGODB} retention.js 
>> log.txt

echo Mongo export retention result
mongoexport 
-h ${MONGODB} -d mydb -c retention.result \
  
--sort '{"value.date" : 1}' \
  
-f value.date,value.register,value.1,value.2,value.3,value.4,value.5,value.6,value.7,value.14,value.30 \
  
--type=csv -o retention_tmp.csv
  
DATE
=`date +%Y%m%d`
FILE
=retention_${DATE}.csv

# csv替换列头
echo 日期,注册数,1日,2日,3日,4日,5日,6日,7日,14日,30日 
> ${FILE}
tail 
-+2 retention_tmp.csv >> ${FILE}

echo Done ${FILE}
!


// 留存率统计脚本
//
 参考文档:留存率统计.txt
//
 Usage:
//
 mongo my.mongo.host retention.js

print(Date());
db 
= db.getSisterDB("mydb");  // use mydb

var startDate = getStartDate();
var endDate = formatDate(new Date());
print(
"Calculating retention rate of [" + startDate + "" + endDate + ")");
if (startDate < endDate) {
    insertDefaultResult(startDate);
    calcRegisterCount(startDate);
    calcRetention(startDate);
    print(Date());
    print(
"Done.");
else {
    print(
"Do nothing.");
}

// Internal functions.

// 获取统计开始日期,之前的已经统计完成,无需重做。
//
 返回字符串,格式:"2015-01-01"
//
 获取 retention.result 的最大 date + 1天, 仅须处理该天及以后的数据。
//
 如果是初次运行,retention.result 为空,须读取 retention.register 的最早日期作为开始。
function getStartDate() {
    
var lastResultDate = getLastResultDate();
    
if (null == lastResultDate) {
        
return getFirstRegisterDate();
    }
        
    
// 加一天
    return getNextDate(lastResultDate);
}

// 获取最早的 retention.register 日期。
function getFirstRegisterDate() {
    
var cursor = db.retention.register.find(
        {date : {$gt : 
"2015-09-01"}},  // 除去 null
        {_id : 0, date : 1}
    ).sort({date : 
1}).limit(1);
    
if (cursor.hasNext()) {
        
return cursor.next().date;
    }
    
return formatDate(new Date());
}

// 获取 retention.result 中最后的 date 字段。
//
 无date字段则返回null。
//
 正常返回如:"2015-01-01"
function getLastResultDate() {
    
// _id 为日期串
    var cursor = db.retention.result.find(
        {}, {_id : 
1}).sort({_id : -1}).limit(1);
    
if (cursor.hasNext()) {
        
return cursor.next()._id;
    }
    
return null;
}

function add0(m) {
    
return m < 10 ? '0+ m : m;
}

// Return likes: "2015-01-02"
function formatDate(date)
{
    
var y = date.getFullYear();
    
var m = date.getMonth() + 1;  // 1..12
    var d = date.getDate();
    
return  y + '-+ add0(m) + '-+ add0(d);
}

// "2015-12-31" -> "2016-01-01"
function getNextDate(dateStr) {
    
var dateObj = new Date(dateStr + " 00:00:00");
    
var nextDayTime = dateObj.getTime() + 24 * 3600 * 1000;
    
var nextDate = new Date(nextDayTime);
    
return formatDate(nextDate);
}

assert(getNextDate(
"2015-12-31"== "2016-01-01");
assert(getNextDate(
"2015-01-01"== "2015-01-02");
assert(getNextDate(
"2015-01-31"== "2015-02-01");

// 插入缺省结果。
//
 某些天无新注册,mapreduce就不会生成该条结果,须强制插入。
function insertDefaultResult(startDateStr) {
    
var docs = new Array();
    
var endDateStr = formatDate(new Date());
    
for (var dateStr = startDateStr;
        dateStr 
< endDateStr;
        dateStr 
= getNextDate(dateStr)) {
        docs.push({_id : dateStr, value : {date : dateStr, register : 
0}});
    }  
// for
    db.retention.result.insert(docs);    
}

// 读取 retention.register 集合, 
//
 计算每日新注册量, 记录于 retention.result.value.register 字段
//
 startDate is like: "2015-01-01"
function calcRegisterCount(startDate) {
    
var mapFunction = function() {
        
var key = this.date;
        
var value = {date : key, register : 1};
        emit(key, value);
    };  
// mapFunction
    
    
var reduceFunction = function(key, values) {
        
var reducedObject = {date : key, register : 0};
        values.forEach(
            
function(value) {
                reducedObject.register 
+= value.register;
            }
        )
        
return reducedObject;
    };  
// reduceFunction
    
    
var endDate = formatDate(new Date());
    db.retention.register.mapReduce(mapFunction, reduceFunction,
        {
            query: {date: {$gte: startDate, $lt: endDate}},
            out: {merge: 
"retention.result"}
        }
    );  
// mapReduce()
}  // function calcRegisterCount()

// 读取 retention.login 集合, 
//
 计算留存率,保存于 retention.result 集合。
//
 startDate is like: "2015-01-01"
function calcRetention(startDate) {
    
var mapFunction = function() {
        
var key = this.register_date;
        
var registerDateObj = new Date(this.register_date + " 00:00:00");
        
var loginDateObj = new Date(this.date + " 00:00:00");
        
var days = (loginDateObj - registerDateObj) / (24 * 3600 * 1000);
        
var value = {date : key, register : 0};
        
var field = days + "_count";  // like: 1_count
        value[field] = 1;
        emit(key, value);
    };  
// mapFunction
    
    
var reduceFunction = function(key, values) {
        
var reducedObject = {date : key, register : 0};
        
for (var i = 1; i <= 60; i++) {
            
var field = i + "_count";
            reducedObject[field] 
= 0;
        }

        values.forEach(
            
function(value) {
                reducedObject.register 
+= value.register;
                
for (var i = 1; i <= 60; i++) {
                    
var field = i + "_count";  // like: 1_count
                    var count = value[field];
                    
if (null != count) {
                        reducedObject[field] 
+= count;
                    }  
// if
                }  // for
            }  // function
        )  // values.forEach()
        return reducedObject;
    };  
// reduceFunction()
    
    
var finalizeFunction = function(key, reducedVal) {
        
if (0 == reducedVal.register)
            
return reducedVal;
        
for (var i = 1; i <= 60; i++) {
            
var field = i + "_count";  // 1_count
            var count = reducedVal[field];
            reducedVal[String(i)] 
= count * 100 / reducedVal.register;
        }
        
return reducedVal;
    };  
// finalizeFunction
    
    
var endDate = formatDate(new Date());
    db.retention.login.mapReduce(mapFunction, reduceFunction,
        {
            query: {date: {$gte: startDate, $lt: endDate}},
            out: {reduce: 
"retention.result"},
            finalize: finalizeFunction,
        }
    );  
// mapReduce()    
}  // function calcRetention()

参考
-----

用户留存率_百度百科
http://baike.baidu.com/link?url=28-agScaamT__jLEBdn5VW-a6CHRlf53bDUrVezkeaHd6TMhO0ULm_9JMmcOu541taQjWGe0JypERg2hIwJCAa

游戏玩家的留存率统计实现 - 流子的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/jiangguilong2000/article/details/16119119

在Mongo数据库里怎么统计留存率呢? - SegmentFault
http://segmentfault.com/q/1010000000652638
posted on 2015-11-10 17:22 金庆 阅读(625) 评论(0)  编辑 收藏 引用 所属分类: 2. 网游开发

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理