相信大家看到这个标题都不屑一顾,因为在任何一本计算机基础知识书的第一章都有他们的解释,但是在书上我们只能找到一些简单的定义,没次看过之后不久就忘了。最近论坛里有人问起这些概念,看到很多人的回复是以前看过现在忘了去看看某某书之类,很少有给出一个合理的解释。于是本人就开始思考(虽然上帝会发笑,我还是要思考。),于是得出了以下的结论。
数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.
数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为
(-127~-0 +0~127)共256个.
有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits
( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确.
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:
( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10
(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题.
( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确
问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).
于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:
(-128~0~127)共256个.
注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:
( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确
( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确
所以补码的设计目的是:
⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.
⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计
所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。看了上面这些大家应该对原码、反码、补码有了新的认识了吧!
posted @
2010-08-25 15:26 eboy 阅读(221) |
评论 (0) |
编辑 收藏
先下载ddkwizard及ddkwizard cmd文件.
安装ddkwizard.
系统变量,增加 WXPBASE = DDK目录,我的是 C:\WinDDK\7600.16385.1
把ddkwizard.cmd复制到任意目录,我的是C:\WinDDK.
打开vs2008,点工具,选项,项目和解决方案,vc++目录,在可执行文件中添加ddkwizard.cmd所在目录,比如我的是C:\WinDDK
确定.就可以了.
点击文件,新建项目,vc++,ddk project,driver,去掉create prefast configuration
确定.即可直接编译驱动了.
posted @
2010-08-02 13:06 eboy 阅读(857) |
评论 (0) |
编辑 收藏
先看代码:以下是在dev-c++里建立自已的dll时的dll.h里面的代码,这里面有一个:_declspec(dllexport)
#ifndef _DLL_H_
#define _DLL_H_//防重复定义
#if BUILDING_DLL
# define DLLIMPORT __declspec (dllexport)
#else /* Not BUILDING_DLL */
# define DLLIMPORT __declspec (dllimport)
#endif /* Not BUILDING_DLL */
DLLIMPORT void HelloWorld (void);
#endif /* _DLL_H_ */
上面代码里面的_delcspce(dllexport)被定义为宏,这样可以提高程序的可读性!这个的作是是将函数定义为导出函数,也就是说这个函数要被包含这个函数的程序之外的程序调用!本语句中就是:void Helloword(void):
摘自msdn:在 32 位编译器版本中,可以使用 __declspec(dllexport) 关键字从 DLL 导出数据、函数、类或类成员函数。__declspec(dllexport) 将导出指令添加到对象文件
若要导出函数,__declspec(dllexport) 关键字必须出现在调用约定关键字的左边(如果指定了关键字)。例如:
__declspec(dllexport) void __cdecl Function1(void);
若要导出类中的所有公共数据成员和成员函数,关键字必须出现在类名的左边,如下所示:
class __declspec(dllexport) CExampleExport : public CObject
{ ... class definition ... };
生成 DLL 时,通常创建一个包含正在导出的函数原型和/或类的头文件,并将 __declspec(dllexport) 添加到头文件中的声明。若要提高代码的可读性,请为 __declspec(dllexport) 定义一个宏并对正在导出的每个符号使用该宏:
#define DllExport __declspec( dllexport )
__declspec(dllexport) 将函数名存储在 DLL 的导出表中。如果希望优化表的大小
更多详细信息请看:
http://msdn.microsoft.com/library/chs/default.asp?url=/library/CHS/vccore/html/_core_export_from_a_dll_using___declspec.28.dllexport.29.asp
posted @
2010-07-30 23:09 eboy 阅读(277) |
评论 (0) |
编辑 收藏
时常在cpp的代码之中看到这样的代码:
#ifdef __cplusplus
extern "C" {
#endif
//一段代码
#ifdef __cplusplus
}
#endif
这样的代码到底是什么意思呢?首先,__cplusplus是cpp中的自定义宏,那么定义了这个宏的话表示这是一段cpp的代码,也就是说,上面的代码的含义是:如果这是一段cpp的代码,那么加入extern "C"{和}处理其中的代码。
要明白为何使用extern "C",还得从cpp中对函数的重载处理开始说起。在c++中,为了支持重载机制,在编译生成的汇编码中,要对函数的名字进行一些处理,加入比如函数的返回类型等等.而在C中,只是简单的函数名字而已,不会加入其他的信息.也就是说:C++和C对产生的函数名字的处理是不一样的.
比如下面的一段简单的函数,我们看看加入和不加入extern "C"产生的汇编代码都有哪些变化:
int f(void)
{
return 1;
}
在加入extern "C"的时候产生的汇编代码是:
.file "test.cxx"
.text
.align 2
.globl _f
.def _f; .scl 2; .type 32; .endef
_f:
pushl %ebp
movl %esp, %ebp
movl $1, %eax
popl %ebp
ret
但是不加入了extern "C"之后
.file "test.cxx"
.text
.align 2
.globl __Z1fv
.def __Z1fv; .scl 2; .type 32; .endef
__Z1fv:
pushl %ebp
movl %esp, %ebp
movl $1, %eax
popl %ebp
ret
两段汇编代码同样都是使用gcc -S命令产生的,所有的地方都是一样的,唯独是产生的函数名,一个是_f,一个是__Z1fv。
明白了加入与不加入extern "C"之后对函数名称产生的影响,我们继续我们的讨论:为什么需要使用extern "C"呢?C++之父在设计C++之时,考虑到当时已经存在了大量的C代码,为了支持原来的C代码和已经写好C库,需要在C++中尽可能的支持C,而extern "C"就是其中的一个策略。
试想这样的情况:一个库文件已经用C写好了而且运行得很良好,这个时候我们需要使用这个库文件,但是我们需要使用C++来写这个新的代码。如果这个代码使用的是C++的方式链接这个C库文件的话,那么就会出现链接错误.我们来看一段代码:首先,我们使用C的处理方式来写一个函数,也就是说假设这个函数当时是用C写成的:
//f1.c
extern "C"
{
void f1()
{
return;
}
}
编译命令是:gcc -c f1.c -o f1.o 产生了一个叫f1.o的库文件。再写一段代码调用这个f1函数:
// test.cxx
//这个extern表示f1函数在别的地方定义,这样可以通过
//编译,但是链接的时候还是需要
//链接上原来的库文件.
extern void f1();
int main()
{
f1();
return 0;
}
通过gcc -c test.cxx -o test.o 产生一个叫test.o的文件。然后,我们使用gcc test.o f1.o来链接两个文件,可是出错了,错误的提示是:
test.o(.text + 0x1f):test.cxx: undefine reference to 'f1()'
也就是说,在编译test.cxx的时候编译器是使用C++的方式来处理f1()函数的,但是实际上链接的库文件却是用C的方式来处理函数的,所以就会出现链接过不去的错误:因为链接器找不到函数。
因此,为了在C++代码中调用用C写成的库文件,就需要用extern "C"来告诉编译器:这是一个用C写成的库文件,请用C的方式来链接它们。
比如,现在我们有了一个C库文件,它的头文件是f.h,产生的lib文件是f.lib,那么我们如果要在C++中使用这个库文件,我们需要这样写:
extern "C"
{
#include "f.h"
}
回到上面的问题,如果要改正链接错误,我们需要这样子改写test.cxx:
extern "C"
{
extern void f1();
}
int main()
{
f1();
return 0;
}
重新编译并且链接就可以过去了.
总结
C和C++对函数的处理方式是不同的.extern "C"是使C++能够调用C写作的库文件的一个手段,如果要对编译器提示使用C的方式来处理函数的话,那么就要使用extern "C"来说明。
posted @
2010-07-30 23:05 eboy 阅读(196) |
评论 (0) |
编辑 收藏
在C语言中,结构是一种复合数据类型,其构成元素既可以是基本数据类型(如int、long、float等)的变量,也可以是一些复合数据类型(如数组、结构、联合等)的数据单元。在结构中,编译器为结构的每个成员按其自然对界(alignment)条件分配空间。各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个结构的地址相同。
例如,下面的结构各成员空间分配情况:
struct test
{
char x1;
short x2;
float x3;
char x4;
};
结构的第一个成员x1,其偏移地址为0,占据了第1个字节。第二个成员x2为short类型,其起始地址必须2字节对界,因此,编译器在x2和x1之间填充了一个空字节。结构的第三个成员x3和第四个成员x4恰好落在其自然对界地址上,在它们前面不需要额外的填充字节。在test结构中,成员x3要求4字节对界,是该结构所有成员中要求的最大对界单元,因而test结构的自然对界条件为4字节,编译器在成员x4后面填充了3个空字节。整个结构所占据空间为12字节。
更改C编译器的缺省字节对齐方式
在缺省情况下,C编译器为每一个变量或是数据单元按其自然对界条件分配空间。一般地,可以通过下面的方法来改变缺省的对界条件:
· 使用伪指令#pragma pack (n),C编译器将按照n个字节对齐。
· 使用伪指令#pragma pack (),取消自定义字节对齐方式。
另外,还有如下的一种方式:
· __attribute((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。
· __attribute__ ((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。
以上的n = 1, 2, 4, 8, 16... 第一种方式较为常见。
( via http://blog.csdn.net/wenddy112/articles/300583.aspx )
下面有一道在 CSDN论坛 上讨论火热的题:
Intel和微软和本公司同时出现的面试题
#pragma pack(8)
struct s1{
short a;
long b;
};
struct s2{
char c;
s1 d;
long long e;
};
#pragma pack()
问
1.sizeof(s2) = ?
2.s2的c后面空了几个字节接着是d?
感谢 redleaves(ID最吊的网友) 的解答,结果如下:
sizeof(S2)结果为24.
成员对齐有一个重要的条件,即每个成员分别对齐.即每个成员按自己的方式对齐.
也就是说上面虽然指定了按8字节对齐,但并不是所有的成员都是以8字节对齐.其对齐的规则是,每个成员按其类型的对齐参数(通常是这个类型的大小)和指定对齐参数(这里是8字节)中较小的一个对齐.并且结构的长度必须为所用过的所有对齐参数的整数倍,不够就补空字节.
S1中,成员a是1字节默认按1字节对齐,指定对齐参数为8,这两个值中取1,a按1字节对齐;成员b是4个字节,默认是按4字节对齐,这时就按4字节对齐,所以sizeof(S1)应该为8;
S2中,c和S1中的a一样,按1字节对齐,而d 是个结构,它是8个字节,它按什么对齐呢?对于结构来说,它的默认对齐方式就是它的所有成员使用的对齐参数中最大的一个,S1的就是4.所以,成员d就是按4字节对齐.成员e是8个字节,它是默认按8字节对齐,和指定的一样,所以它对到8字节的边界上,这时,已经使用了12个字节了,所以又添加了4个字节的空,从第16个字节开始放置成员e.这时,长度为24,已经可以被8(成员e按8字节对齐)整除.这样,一共使用了24个字节.
a b
S1的内存布局:11**,1111,
c S1.a S1.b d
S2的内存布局:1***,11**,1111,****11111111
这里有三点很重要:
1.每个成员分别按自己的方式对齐,并能最小化长度
2.复杂类型(如结构)的默认对齐方式是它最长的成员的对齐方式,这样在成员是复杂类型时,可以最小化长度
3.对齐后的长度必须是成员中最大的对齐参数的整数倍,这样在处理数组时可以保证每一项都边界对齐
补充一下,对于数组,比如:
char a[3];这种,它的对齐方式和分别写3个char是一样的.也就是说它还是按1个字节对齐.
如果写: typedef char Array3[3];
Array3这种类型的对齐方式还是按1个字节对齐,而不是按它的长度.
不论类型是什么,对齐的边界一定是1,2,4,8,16,32,64....中的一个.
测试的编译器:
GCC 2.95 3.1 3.3 3.4 4.0
MS C/C++ 7.0 7.1 8.0 beta
Borland C/C++ 5.6 6.0
Intel C/C++ 7.0 8.0 8.1
DigitalMars C/C++ 8.4
OpenWatcom 1.3
Codeplay C/C++ 2.1.7
posted @
2010-07-29 16:36 eboy 阅读(180) |
评论 (0) |
编辑 收藏