http://www.jb51.net/article/77664.htm
1.序言
Golang作为一门出身名门望族的编程语言新星,像豆瓣的Redis平台Codis、类Evernote的云笔记leanote等。
1.1 为什么要学习
如果有人说X语言比Y语言好,两方的支持者经常会激烈地争吵。如果你是某种语言老手,你就是那门语言的“传道者”,下意识地会保护它。无论承认与否,你都已被困在一个隧道里,你看到的完全是局限的。《肖申克的救赎》对此有很好的注脚:
[Red] These walls are funny. First you hate ‘em, then you get used to ‘em. Enough time passes, you get so you depend on them. That's institutionalized.
这些墙很有趣。起初你恨它们,之后你习惯了它们。随着时间流逝,你开始以来它们。这就是体制。
在你还没有被完全“体制化”时,为何不多学些语言,哪怕只是浅尝辄止,潜移默化中也许你的思维壁垒就松动了。不管是Golang还是Ruby还是其他语言,当看到一些语法习惯与之前熟悉的C和Java不同时,的确潜意识里就会产生抵触情绪,觉得这不好,还是自己习惯的那套好。长此以往,如果不能冲破自己的心理,“坐以待毙”,被时间淘汰恐怕只是早晚的事儿。所以这里的关键也 不是非要学习Golang,而是要不断地学!
1.2 用什么工具来开发
Golang也有专门的IDE,但由于最近迷上了Sublime Text神器,所以这里还是用ST来学习Golang。配置步骤与在ST中使用其他语言开发都类似:
安装智能提示插件GoSublime
创建编译配置脚本
点Preferences -> Package Settings -> GoSublime -> User Settings中写入(感觉保存时自动格式化出来的缩进、空格等风格有些“讨厌”,所以就禁掉了):
{
"fmt_enabled": false,
"env": {
"path":"D:\\Program Files (x86)\\Go\bin"
}
}
点新建Build System产生go.sublime-build中写入:
{
"path": "D:\\Program Files (x86)\\Go\\bin",
"cmd": ["go", "run", "${file}"],
"selector": "source.go"
}
2.你好,世界
Golang版的HelloWorld来了!一眼望去,package和import的声明方式与Java如出一辙,比较明显的区别是:func关键字、每行末尾没有分号、Println()大写的函数名。这个例子虽小,却“五脏俱全”,后面会逐一分析这个小例子中碰到的Golang语法点。
package main
import "fmt"
func main() {
fmt.Println("你好,世界!")
}
2.1 运行方式
Golang提供了go run“解释”执行和go build编译执行两种运行方式,所谓的“解释”执行其实也是编译出了可执行文件后才执行的。
$ go run helloworld.go
你好,世界!
$ go build helloworld.go
$ ls
helloworld helloworld.go
$ ./helloworld
你好,世界!
2.2 Package管理
上面例子中我们使用的就是fmt包下的Println()函数。Golang约定:我们可以用./或../相对路径来引自己的package;如果不是相对路径,那么go会去$GOPATH/src下查找。
2.3 格式化输出
类似C、Java等语言,Golang的fmt包提供了格式化输出功能,而且像%d、%s等占位符和\t、\r、\n转义也几乎完全一致。但Golang的Println不支持格式化,只有Printf支持,所以我们经常会在后面加入\n换行。此外,Golang加入了%T打印值的类型,%v打印数组等集合的所有元素。
package main
import "fmt"
import "math"
/**
* This is Printer!
* 布尔值:false
* 二进制:11111111
* 八进制:377
* 十六进制:FF
* 十进制:255
* 浮点数:3.141593
* 字符串:printer
*
* 对象类型:int,string,bool,float64
* 集合:[1 2 3 4 5]
*/
func main() {
fmt.Println("This is Printer!")
fmt.Printf("布尔值:%t\n", 1 == 2)
fmt.Printf("二进制:%b\n", 255)
fmt.Printf("八进制:%o\n", 255)
fmt.Printf("十六进制:%X\n", 255)
fmt.Printf("十进制:%d\n", 255)
fmt.Printf("浮点数:%f\n", math.Pi)
fmt.Printf("字符串:%s\n", "printer")
fmt.Printf("对象类型:%T,%T,%T,%T\n", 1, "hello", true, math.E)
fmt.Printf("集合:%v\n", [5]int{1, 2, 3, 4, 5})
}
3.语法基础
3.1 变量和常量
虽然Golang是静态类型语言,却用类似JavaScript中的var关键字声明变量。而且像同样是静态语言的Scala一样,支持类型自动推断。有一点很重要的不同是:如果明确指明变量类型的话,类型要放在变量名后面。这有点别扭吧?!后面会看到函数的入参和返回值的类型也要这样声明。
package main
import "fmt"
/**
* 单变量声明:num[100], word[hello]
* 多变量声明:i[1], i[2], k[3]
* 推导类型:b1[true], b2[false]
* 常量:age[20], pi[3.141593]
*/
func main() {
var num int = 100
var word string = "hello"
fmt.Printf("单变量声明:num[%d], word[%s]\n", num, word)
var i, j, k int = 1, 2, 3
fmt.Printf("多变量声明:i[%d], i[%d], k[%d]\n", i, j, k)
var b1 = true
b2 := false
fmt.Printf("推导类型:b1[%t], b2[%t]\n", b1, b2)
const age int = 20
const pi float32 = 3.1415926
fmt.Printf("常量:age[%d], pi[%f]\n", age, pi)
}
3.2 控制语句
作为最基本的语法要素,Golang的各种控制语句也是特点鲜明。在对C继承发扬的同时,也有自己的想法融入其中:
if/switch/for的条件部分都没有圆括号,但必须有花括号。
switch的case中不需要break。《C专家编程》里也“控诉”了C的fall-through问题。既然90%以上的情况都要break,为何不将break作为case的默认行为?而且编程语言后来者也鲜有纠正这一问题的。
switch的case条件可以是多个值。
Golang中没有while。
package main
import "fmt"
/**
* testIf: x[2] is even
* testIf: x[3] is odd
*
* testSwitch: One
* testSwitch: Two
* testSwitch: Three, Four, Five [3]
* testSwitch: Three, Four, Five [4]
* testSwitch: Three, Four, Five [5]
*
* 标准模式:[0] [1] [2] [3] [4] [5] [6]
* While模式:[0] [1] [2] [3] [4] [5] [6]
* 死循环模式:[0] [1] [2] [3] [4] [5] [6]
*/
func main() {
testIf(2)
testIf(3)
testSwitch(1)
testSwitch(2)
testSwitch(3)
testSwitch(4)
testSwitch(5)
testFor(7)
}
func testIf(x int) {
if x % 2 == 0 {
fmt.Printf("testIf: x[%d] is even\n", x)
} else {
fmt.Printf("testIf: x[%d] is odd\n", x)
}
}
func testSwitch(i int) {
switch i {
case 1:
fmt.Println("testSwitch: One")
case 2:
fmt.Println("testSwitch: Two")
case 3, 4, 5:
fmt.Printf("testSwitch: Three, Four, Five [%d]\n", i)
default:
fmt.Printf("testSwitch: Invalid value[%d]\n", i)
}
}
func testFor(upper int) {
fmt.Print("标准模式:")
for i := 0; i < upper; i++ {
fmt.Printf("[%d] ", i)
}
fmt.Println()
fmt.Print("While模式:")
j := 0
for j < upper {
fmt.Printf("[%d] ", j)
j++
}
fmt.Println()
fmt.Print("死循环模式:")
k := 0
for {
if (k >= upper) {
break
}
fmt.Printf("[%d] ", k)
k++
}
fmt.Println()
}
分号和花括号
分号由词法分析器在扫描源代码过程自动插入的,分析器使用简单的规则:如果在一个新行前方的最后一个标记是一个标识符(包括像int和float64这样的单词)、一个基本的如数值这样的文字、或break continue fallthrough return ++ – ) }中的一个时,它就会自动插入分号。
分号的自动插入规则产生了“蝴蝶效应”:所有控制结构的左花括号不都能放在下一行。因为按照上面的规则,这样做会导致分析器在左花括号的前方插入一个分号,从而引起难以预料的结果。所以Golang中是不能随便换行的。
3.3 函数
函数有几点不同:
func关键字。
最大的不同就是“倒序”的类型声明。
不需要函数原型,引用的函数可以后定义。这一点很好,真不喜欢C语言里要么将“最底层抽象”的函数放在最前面定义,要么写一堆函数原型声明在最前面。
3.4 集合
Golang提供了数组和Map作为基本数据结构:
数组中的元素会自动初始化,例如int数组元素初始化为0
切片(借鉴Python)的区间跟主流语言一样,都是 “左闭右开”
用 range()遍历数组和Map
package main
import "fmt"
/**
* Array未初始化: [0 0 0 0 0]
* Array赋值: [0 10 0 20 0]
* Array初始化: [0 1 2 3 4 5]
* Array二维: [[0 1 2] [1 2 3]]
* Array切片: [2 3] [0 1 2 3] [2 3 4 5]
*
* Map哈希表:map[one:1 two:2 three:3],长度[3]
* Map删除元素后:map[one:1 three:3],长度[2]
* Map打印:
* one => 1
* four => 4
* three => 3
* five => 5
*/
func main() {
testArray()
testMap()
}
func testArray() {
var a [5]int
fmt.Println("Array未初始化: ", a)
a[1] = 10
a[3] = 20
fmt.Println("Array赋值: ", a)
b := []int{0, 1, 2, 3, 4, 5}
fmt.Println("Array初始化: ", b)
var c [2][3]int
for i := 0; i < 2; i++ {
for j := 0; j < 3; j++ {
c[i][j] = i + j
}
}
fmt.Println("Array二维: ", c)
d := b[2:4] // b[3,4]
e := b[:4] // b[1,2,3,4]
f := b[2:] // b[3,4,5]
fmt.Println("Array切片:", d, e, f)
}
func testMap() {
m := make(map[string]int)
m["one"] = 1
m["two"] = 2
m["three"] = 3
fmt.Printf("Map哈希表:%v,长度[%d]\n", m, len(m))
delete(m, "two")
fmt.Printf("Map删除元素后:%v,长度[%d]\n", m, len(m))
m["four"] = 4
m["five"] = 5
fmt.Println("Map打印:")
for key, val := range m {
fmt.Printf("\t%s => %d\n", key, val)
}
fmt.Println()
}
3.5 指针和内存分配
Golang中可以使用指针,并提供了两种内存分配机制:
new:分配长度为0的空白内存,返回类型T*。
make:仅用于 切片、map、chan消息管道,返回类型T而不是指针。
package main
import "fmt"
/**
* 整数i=[10],指针pInt=[0x184000c0],指针指向*pInt=[10]
* 整数i=[3],指针pInt=[0x184000c0],指针指向*pInt=[3]
* 整数i=[5],指针pInt=[0x184000c0],指针指向*pInt=[5]
*
* Wild的数组指针: <nil>
* Wild的数组指针==nil[true]
*
* New分配的数组指针: &[]
* New分配的数组指针[0x18443010],长度[0]
* New分配的数组指针==nil[false]
* New分配的数组指针Make后: &[0 0 0 0 0 0 0 0 0 0]
* New分配的数组元素[3]: 23
*
* Make分配的数组引用: [0 0 0 0 0 0 0 0 0 0]
*/
func main() {
testPointer()
testMemAllocate()
}
func testPointer() {
var i int = 10;
var pInt *int = &i;
fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
i, pInt, *pInt)
*pInt = 3
fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
i, pInt, *pInt)
i = 5
fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
i, pInt, *pInt)
}
func testMemAllocate() {
var pNil *[]int
fmt.Println("Wild的数组指针:", pNil)
fmt.Printf("Wild的数组指针==nil[%t]\n", pNil == nil)
var p *[]int = new([]int)
fmt.Println("New分配的数组指针:", p)
fmt.Printf("New分配的数组指针[%p],长度[%d]\n", p, len(*p))
fmt.Printf("New分配的数组指针==nil[%t]\n", p == nil)
//Error occurred
//(*p)[3] = 23
*p = make([]int, 10)
fmt.Println("New分配的数组指针Make后:", p)
(*p)[3] = 23
fmt.Println("New分配的数组元素[3]:", (*p)[3])
var v []int = make([]int, 10)
fmt.Println("Make分配的数组引用:", v)
}
3.6 面向对象编程
Golang的结构体跟C有几点不同:
结构体可以有方法,其实也就相当于OOP中的类了。
支持带名称的初始化。
用指针访问结构中的属性也用”.”而不是”->”,指针就像Java中的引用一样。
没有public,protected,private等访问权限控制。C也没有protected,C中默认是public的,private需要加static关键字限定。Golang中方法名大写就是public的,小写就是private的。
同时,Golang支持接口和多态,而且接口有别于Java中继承和实现的方式,而是采取了类似Ruby中更为新潮的Duck Type。只要struct与interface有相同的方法,就认为struct实现了这个接口。就好比只要能像鸭子那样叫,我们就认为它是一只鸭子一样。
package main
import (
"fmt"
"math"
)
// -----------------
// Struct
// -----------------
type Person struct {
name string
age int
email string
}
func (p *Person) getName() string {
return p.name
}
// -------------------
// Interface
// -------------------
type shape interface {
area() float64
}
type rect struct {
width float64
height float64
}
func (r *rect) area() float64 {
return r.width * r.height
}
type circle struct {
radius float64
}
func (c *circle) area() float64 {
return math.Pi * c.radius * c.radius
}
// -----------------
// Test
// -----------------
/**
* 结构Person[{cdai 30 cdai@gmail.com}],姓名[cdai]
* 结构Person指针[&{cdai 30 cdai@gmail.com}],姓名[cdai]
* 用指针修改结构Person为[{carter 40 cdai@gmail.com}]
*
* Shape[0]周长为[13.920000]
* Shape[1]周长为[58.088048]
*/
func main() {
testStruct()
testInterface()
}
func testStruct() {
p1 := Person{"cdai", 30, "cdai@gmail.com"}
p1 = Person{name: "cdai", age: 30, email: "cdai@gmail.com"}
fmt.Printf("结构Person[%v],姓名[%s]\n", p1, p1.getName())
ptr1 := &p1
fmt.Printf("结构Person指针[%v],姓名[%s]\n", ptr1, ptr1.getName())
ptr1.age = 40
ptr1.name = "carter"
fmt.Printf("用指针修改结构Person为[%v]\n", p1)
}
func testInterface() {
r := rect { width: 2.9, height: 4.8 }
c := circle { radius: 4.3 }
s := []shape{ &r, &c }
for i, sh := range s {
fmt.Printf("Shape[%d]周长为[%f]\n", i, sh.area())
}
}
3.7 异常处理
Golang中异常的使用比较简单,可以用errors.New创建,也可以实现Error接口的方法来自定义异常类型,同时利用函数的多返回值特性可以返回异常类。比较复杂的是defer和recover关键字的使用。Golang没有采取try-catch“包住”可能出错代码的这种方式,而是用 延迟处理 的方式。
用defer调用的函数会以后进先出(LIFO)的方式,在当前函数结束后依次顺行执行。defer的这一特点正好可以用来处理panic。当panic被调用时,它将立即停止当前函数的执行并开始逐级解开函数堆栈,同时运行所有被defer的函数。如果这种解开达到堆栈的顶端,程序就死亡了。但是,也可以使用内建的recover函数来重新获得Go程的控制权并恢复正常的执行。由于仅在解开期间运行的代码处在被defer的函数之内,recover仅在被延期的函数内部才是有用的。
package main
import (
"fmt"
"errors"
"os"
)
/**
* 自定义Error类型,实现内建Error接口
* type Error interface {
* Error() string
* }
*/
type MyError struct {
arg int
msg string
}
func (e *MyError) Error() string {
return fmt.Sprintf("%d - %s", e.arg, e.msg)
}
/**
* Failed[*errors.errorString]: Bad Arguments - negative!
* Success: 16
* Failed[*main.MyError]: 1000 - Bad Arguments - too large!
*
* Recovered! Panic message[Cannot find specific file]
* 4 3 2 1 0
*/
func main() {
// 1.Test error
args := []int{-1, 4, 1000}
for _, i := range args {
if r, e := testError(i); e != nil {
fmt.Printf("Failed[%T]: %v\n", e, e)
} else {
fmt.Println("Success: ", r)
}
}
// 2.Test defer
src, err := os.Open("control.go")
if (err != nil) {
fmt.Printf("打开文件错误[%v]\n", err)
return
}
defer src.Close()
// use src...
for i := 0; i < 5; i++ {
defer fmt.Printf("%d ", i)
}
// 3.Test panic/recover
defer func() {
if r := recover(); r != nil {
fmt.Printf("Recovered! Panic message[%s]\n", r)
}
}()
_, err2 := os.Open("test.go")
if (err2 != nil) {
panic("Cannot find specific file")
}
}
func testError(arg int) (int, error) {
if arg < 0 {
return -1, errors.New("Bad Arguments - negative!")
} else if arg > 256 {
return -1, &MyError{ arg, "Bad Arguments - too large!" }
} else {
return arg * arg, nil
}
}
4.高级特性
上面介绍的只是Golang的基本语法和特性,尽管像控制语句的条件不用圆括号、函数多返回值、switch-case默认break、函数闭包、集合切片等特性相比Java的确提高了开发效率,但这些在其他语言中也都有,并不是Golang能真正吸引人的地方。不仅是Golang,我们学习任何语言当然都是从基本语法特性着手,但学习时要不断地问自己:使这门语言区别于其他语言的”独到之处“在哪?这种独到之处往往反映了语言的设计思想、出发点、要解决的”痛点“,这才是一门语言或任何技术的立足之本。
4.1 goroutine
goroutine使用go关键字来调用函数,也可以使用匿名函数。可以简单的把go关键字调用的函数想像成pthread_create。如果一个goroutine没有被阻塞,那么别的goroutine就不会得到执行。也就是说goroutine阻塞时,Golang会切换到其他goroutine执行,这是非常好的特性!Java对类似goroutine这种的协程没有原生支持,像Akka最害怕的就是阻塞。因为协程不等同于线程,操作系统不会帮我们完成“现场”保存和恢复,所以要实现goroutine这种特性,就要模拟操作系统的行为,保存方法或函数在协程“上下文切换”时的Context,当阻塞结束时才能正确地切换回来。像Kilim等协程库利用字节码生成,能够胜任,而Akka完全是运行时的。
注意:如果你要真正的并发,需要调用runtime.GOMAXPROCS(CPU_NUM)设置。
package main
import "fmt"
func main() {
go f("goroutine")
go func(msg string) {
fmt.Println(msg)
}("going")
// Block main thread
var input string
fmt.Scanln(&input)
fmt.Println("done")
}
func f(msg string) {
fmt.Println(msg)
}
4.2 原子操作
像Java一样,Golang支持很多CAS操作。运行结果是unsaftCnt可能小于200,因为unsafeCnt++在机器指令层面上不是一条指令,而可能是从内存加载数据到寄存器、执行自增运算、保存寄存器中计算结果到内存这三部分,所以不进行保护的话有些更新是会丢失的。
package main
import (
"fmt"
"time"
"sync/atomic"
"runtime"
)
func main() {
// IMPORTANT!!!
runtime.GOMAXPROCS(4)
// thread-unsafe
var unsafeCnt int32 = 0
for i := 0; i < 10; i++ {
go func() {
for i := 0; i < 20; i++ {
time.Sleep(time.Millisecond)
unsafeCnt++
}
}()
}
time.Sleep(time.Second)
fmt.Println("cnt: ", unsafeCnt)
// CAS toolkit
var cnt int32 = 0
for i := 0; i < 10; i++ {
go func() {
for i := 0; i < 20; i++ {
time.Sleep(time.Millisecond)
atomic.AddInt32(&cnt, 1)
}
}()
}
time.Sleep(time.Second)
cntFinal := atomic.LoadInt32(&cnt)
fmt.Println("cnt: ", cntFinal)
}
神奇CAS的原理
Golang的AddInt32()类似于Java中AtomicInteger.incrementAndGet(),其伪代码可以表示如下。二者的基本思想是一致的,本质上是 乐观锁:首先,从内存位置M加载要修改的数据到寄存器A中;然后,修改数据并保存到另一寄存器B;最终,利用CPU提供的CAS指令(Java通过JNI调用到)用一条指令完成:1)A值与M处的原值比较;2)若相同则将B值覆盖到M处。
若不相同,则CAS指令会失败,说明从内存加载到执行CAS指令这一小段时间内,发生了上下文切换,执行了其他线程的代码修改了M处的变量值。那么重新执行前面几个步骤再次尝试。
ABA问题:即另一线程修改了M位置的数据,但是从原值改为C,又从C改回原值。这样上下文切换回来,CAS指令发现M处的值“未改变”(实际是改了两次,最后改回来了),所以CAS指令正常执行,不会失败。这种问题在Java中可以用AtomicStampedReference/AtomicMarkableReference解决。
public final int incrementAndGet() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}
4.3 Channel管道
通过前面可以看到,尽管goroutine很方便很高效,但如果滥用的话很可能会导致并发安全问题。而Channel就是用来解决这个问题的,它是goroutine之间通信的桥梁,类似Actor模型中每个Actor的mailbox。多个goroutine要修改一个状态时,可以将请求都发送到一个Channel里,然后由一个goroutine负责顺序地修改状态。
Channel默认是阻塞的,也就是说select时如果没有事件,那么当前goroutine会发生读阻塞。同理,Channel是有大小的,当Channel满了时,发送方会发生写阻塞。Channel这种阻塞的特性加上goroutine可以很容易就能实现生产者-消费者模式。
用case可以给Channel设置阻塞的超时时间,避免一直阻塞。而default则使select进入无阻塞模式。
package main
import (
"fmt"
"time"
)
/**
* Output:
* received message: hello
* received message: world
*
* received from channel-1: Hello
* received from channel-2: World
*
* received message: hello
* Time out!
*
* Nothing received!
* received message: hello
* Nothing received!
* Nothing received!
* Nothing received!
* Nothing received!
* Nothing received!
* Nothing received!
* Nothing received!
* Nothing received!
* Nothing received!
* received message: world
* Nothing received!
* Nothing received!
* Nothing received!
*/
func main() {
listenOnChannel()
selectTwoChannels()
blockChannelWithTimeout()
unblockChannel()
}
func listenOnChannel() {
// Specify channel type and buffer size
channel := make(chan string, 5)
go func() {
channel <- "hello"
channel <- "world"
}()
for i := 0; i < 2; i++ {
msg := <- channel
fmt.Println("received message: " + msg)
}
}
func selectTwoChannels() {
c1 := make(chan string)
c2 := make(chan string)
go func() {
time.Sleep(time.Second)
c1 <- "Hello"
}()
go func() {
time.Sleep(time.Second)
c2 <- "World"
}()
for i := 0; i < 2; i++ {
select {
case msg1 := <- c1:
fmt.Println("received from channel-1: " + msg1)
case msg2 := <- c2:
fmt.Println("received from channel-2: " + msg2)
}
}
}
func blockChannelWithTimeout() {
channel := make(chan string, 5)
go func() {
channel <- "hello"
// Sleep 10 sec
time.Sleep(time.Second * 10)
channel <- "world"
}()
for i := 0; i < 2; i++ {
select {
case msg := <- channel:
fmt.Println("received message: " + msg)
// Set timeout 5 sec
case <- time.After(time.Second * 5):
fmt.Println("Time out!")
}
}
}
func unblockChannel() {
channel := make(chan string, 5)
go func() {
channel <- "hello"
time.Sleep(time.Second * 10)
channel <- "world"
}()
for i := 0; i < 15; i++ {
select {
case msg := <- channel:
fmt.Println("received message: " + msg)
default:
fmt.Println("Nothing received!")
time.Sleep(time.Second)
}
}
}
4.4 缓冲流
Golang的bufio包提供了方便的缓冲流操作,通过strings或网络IO得到流后,用bufio.NewReader/Writer()包装:
缓冲区:Peek()或Read时,数据会从底层进入到缓冲区。缓冲区默认大小为4096字节。
切片和拷贝:Peek()和ReadSlice()得到的都是切片(缓冲区数据的引用)而不是拷贝,所以更加节约空间。但是当缓冲区数据变化时,切片也会随之变化。而ReadBytes/String()得到的都是数据的拷贝,可以放心使用。
Unicode支持:ReadRune()可以直接读取Unicode字符。有意思的是Golang中Unicode字符也要用单引号,这点与Java不同。
分隔符:ReadSlice/Bytes/String()得到的包含分隔符,bufio不会自动去掉。
Writer:对应地,Writer提供了WriteBytes/String/Rune。
undo方法:可以将读出的字节再放回到缓冲区,就像什么都没发生一样。
package main
import (
"fmt"
"strings"
"bytes"
"bufio"
)
/**
* Buffered: 0
* Buffered after peek: 7
* ABCDE
* AxCDE
*
* abcdefghijklmnopqrst 20 <nil>
* uvwxyz1234567890 16 <nil>
* 0 EOF
*
* "ABC "
* "DEF "
* "GHI"
*
* "ABC "
* "DEF "
* "GHI"
*
* read unicode=[你], size=[3]
* read unicode=[好], size=[3]
* read(after undo) unicode=[好], size=[3]
*
* Available: 4096
* Buffered: 0
* Available after write: 4088
* Buffered after write: 8
* Buffer after write: ""
* Available after flush: 4096
* Buffered after flush: 0
* Buffer after flush: "ABCDEFGH"
*
* Hello,世界!
*/
func main() {
testPeek()
testRead()
testReadSlice()
testReadBytes()
testReadUnicode()
testWrite()
testWriteByte()
}
func testPeek() {
r := strings.NewReader("ABCDEFG")
br := bufio.NewReader(r)
fmt.Printf("Buffered: %d\n", br.Buffered())
p, _ := br.Peek(5)
fmt.Printf("Buffered after peek: %d\n", br.Buffered())
fmt.Printf("%s\n", p)
p[1] = 'x'
p, _ = br.Peek(5)
fmt.Printf("%s\n", p)
}
func testRead() {
r := strings.NewReader("abcdefghijklmnopqrstuvwxyz1234567890")
br := bufio.NewReader(r)
b := make([]byte, 20)
n, err := br.Read(b)
fmt.Printf("%-20s %-2v %v\n", b[:n], n, err)
n, err = br.Read(b)
fmt.Printf("%-20s %-2v %v\n", b[:n], n, err)
n, err = br.Read(b)
fmt.Printf("%-20s %-2v %v\n", b[:n], n, err)
}
func testReadSlice() {
r := strings.NewReader("ABC DEF GHI")
br := bufio.NewReader(r)
w, _ := br.ReadSlice(' ')
fmt.Printf("%q\n", w)
w, _ = br.ReadSlice(' ')
fmt.Printf("%q\n", w)
w, _ = br.ReadSlice(' ')
fmt.Printf("%q\n", w)
}
func testReadBytes() {
r := strings.NewReader("ABC DEF GHI")
br := bufio.NewReader(r)
w, _ := br.ReadBytes(' ')
fmt.Printf("%q\n", w)
w, _ = br.ReadSlice(' ')
fmt.Printf("%q\n", w)
s, _ := br.ReadString(' ')
fmt.Printf("%q\n", s)
}
func testReadUnicode() {
r := strings.NewReader("你好,世界!")
br := bufio.NewReader(r)
c, size, _ := br.ReadRune()
fmt.Printf("read unicode=[%c], size=[%v]\n", c, size)
c, size, _ = br.ReadRune()
fmt.Printf("read unicode=[%c], size=[%v]\n", c, size)
br.UnreadRune()
c, size, _ = br.ReadRune()
fmt.Printf("read(after undo) unicode=[%c], size=[%v]\n", c, size)
}
func testWrite() {
b := bytes.NewBuffer(make([]byte, 0))
bw := bufio.NewWriter(b)
fmt.Printf("Available: %d\n", bw.Available())
fmt.Printf("Buffered: %d\n", bw.Buffered())
bw.WriteString("ABCDEFGH")
fmt.Printf("Available after write: %d\n", bw.Available())
fmt.Printf("Buffered after write: %d\n", bw.Buffered())
fmt.Printf("Buffer after write: %q\n", b)
bw.Flush()
fmt.Printf("Available after flush: %d\n", bw.Available())
fmt.Printf("Buffered after flush: %d\n", bw.Buffered())
fmt.Printf("Buffer after flush: %q\n", b)
}
func testWriteByte() {
b := bytes.NewBuffer(make([]byte, 0))
bw := bufio.NewWriter(b)
bw.WriteByte('H')
bw.WriteByte('e')
bw.WriteByte('l')
bw.WriteByte('l')
bw.WriteByte('o')
bw.WriteString(",")
bw.WriteRune('世')
bw.WriteRune('界')
bw.WriteRune('!')
bw.Flush()
fmt.Println(b)
}
4.5 并发控制
sync包中的WaitGroup是个很有用的类,类似信号量。wg.Add()和Done()能够加减WaitGroup(信号量)的值,而Wait()会挂起当前线程直到信号量变为0。下面的例子用WaitGroup的值表示正在运行的goroutine数量。在goroutine中,用defer Done()确保goroutine正常或异常退出时,WaitGroup都能减一。
package main
import (
"fmt"
"sync"
)
/**
* I'm waiting all goroutines on wg done
* I'm done=[0]
* I'm done=[1]
* I'm done=[2]
* I'm done=[3]
* I'm done=[4]
* I'm done=[5]
* I'm done=[6]
* I'm done=[7]
* I'm done=[8]
* I'm done=[9]
*/
func main() {
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go func(id int) {
defer wg.Done()
fmt.Printf("I'm done=[%d]\n", id)
}(i)
}
fmt.Println("I'm waiting all goroutines on wg done")
wg.Wait()
}
4.6 网络编程
Golang的net包的抽象层次还是挺高的,用不了几行代码就能实现一个简单的TCP或HTTP服务端了。
4.6.1 Socket编程
package main
import (
"net"
"fmt"
"io"
)
/**
* Starting the server
* Accept the connection: 127.0.0.1:14071
* Warning: End of data EOF
*/
func main() {
listener, err := net.Listen("tcp", "127.0.0.1:12345")
if err != nil {
panic("error listen: " + err.Error())
}
fmt.Println("Starting the server")
for {
conn, err := listener.Accept()
if err != nil {
panic("error accept: " + err.Error())
}
fmt.Println("Accept the connection: ", conn.RemoteAddr())
go echoServer(conn)
}
}
func echoServer(conn net.Conn) {
buf := make([]byte, 1024)
defer conn.Close()
for {
n, err := conn.Read(buf)
switch err {
case nil:
conn.Write(buf[0:n])
case io.EOF:
fmt.Printf("Warning: End of data %s\n", err)
return
default:
fmt.Printf("Error: read data %s\n", err)
return
}
}
}
4.6.2 Http服务器
package main
import (
"fmt"
"log"
"net/http"
)
func main() {
http.HandleFunc("/hello", handleHello)
fmt.Println("serving on http://localhost:7777/hello")
log.Fatal(http.ListenAndServe("localhost:7777", nil))
}
func handleHello(w http.ResponseWriter, req *http.Request) {
log.Println("serving", req.URL)
fmt.Fprintln(w, "Hello, world!")
}
5.结束语
5.1 Golang初体验
Golang的某些语法的确很简洁,像行尾无分号、条件语句无括号、类型推断、函数多返回值、异常处理、原生协程支持、DuckType继承等,尽管很多并不是Golang首创,但结合到一起写起来还是很舒服的。
当然Golang也有让人“不爽”的地方。像变量和函数中的类型声明写在后面简直是“反人类”!同样是颠覆,switch的case默认会break就很实用。另外,因为Golang主要还是想替代C做系统开发,所以像类啊、包啊还是能看到C的影子,例如类声明只有成员变量而不会包含方法实现等,支持全局函数等,所以有时看到aaa.bbb()还是有点迷糊,不知道aaa是包名还是实例名。
5.2 如何学习一门语言
当我们谈到学习英语时,想到的可能是背单词、学语法、练习听说读写。对于编程语言来说,背单词(关键字)、学语法(语法规则)少不了,可听说读写只剩下了“写”,因为我们说话的对象是“冷冰冰”的计算机。所以唯一的捷径就是“写”,不断地练习!
此外,学的语言多了也能总结出一些规律。首先是基础语法,包括了变量和常量、控制语句、函数、集合、OOP、异常处理、控制台输入输出、包管理等。然后是高级特性就差别比较大了。专注高并发的语言就要看并发方面的特性,专注OOP的语言就要看有哪些抽象层次更高的特性等等。还是那句话,基础语言只能说我们会用,而能够区别一门语言的高级特性才是它的根本和灵魂,也是我们要着重学习和领悟的地方。
您可能感兴趣的文章:
【玩转Golang】slice切片的操作——切片的追加、删除、插入等
一、一般操作
1,声明变量,go自动初始化为nil,长度:0,地址:0,nil
func main(){
var ss []string;
fmt.Printf("length:%v \taddr:%p \tisnil:%v",len(ss),ss, ss==nil)
}
---
Running...
length:0 addr:0x0 isnil:true
Success: process exited with code 0.
2,切片的追加,删除,插入操作
func main(){
var ss []string;
fmt.Printf("[ local print ]\t:\t length:%v\taddr:%p\tisnil:%v\n",len(ss),ss, ss==nil)
print("func print",ss)
//切片尾部追加元素append elemnt
for i:=0;i<10;i++{
ss=append(ss,fmt.Sprintf("s%d",i));
}
fmt.Printf("[ local print ]\t:\tlength:%v\taddr:%p\tisnil:%v\n",len(ss),ss, ss==nil)
print("after append",ss)
//删除切片元素remove element at index
index:=5;
ss=append(ss[:index],ss[index+1:]...)
print("after delete",ss)
//在切片中间插入元素insert element at index;
//注意:保存后部剩余元素,必须新建一个临时切片
rear:=append([]string{},ss[index:]...)
ss=append(ss[0:index],"inserted")
ss=append(ss,rear...)
print("after insert",ss)
}
func print(msg string,ss []string){
fmt.Printf("[ %20s ]\t:\tlength:%v\taddr:%p\tisnil:%v\tcontent:%v",msg,len(ss),ss, ss==nil,ss)
fmt.Println()
}
------
Running...
[ local print ] : length:0 addr:0x0 isnil:true
[ func print ] : length:0 addr:0x0 isnil:true content:[]
[ local print ] : length:10 addr:0xc208056000 isnil:false
[ after append ] : length:10 addr:0xc208056000 isnil:false content:[s0 s1 s2 s3 s4 s5 s6 s7 s8 s9]
[ after delete ] : length:9 addr:0xc208056000 isnil:false content:[s0 s1 s2 s3 s4 s6 s7 s8 s9]
[ after insert ] : length:10 addr:0xc208056000 isnil:false content:[s0 s1 s2 s3 s4 inserted s6 s7 s8 s9]
Success: process exited with code 0.
3,copy的使用。
在使用copy复制切片之前,要保证目标切片有足够的大小,注意是大小,而不是容量,还是看例子:
func main() {
var sa = make ([]string,0);
for i:=0;i<10;i++{
sa=append(sa,fmt.Sprintf("%v",i))
}
var da =make([]string,0,10);
var cc=0;
cc= copy(da,sa);
fmt.Printf("copy to da(len=%d)\t%v\n",len(da),da)
da = make([]string,5)
cc=copy(da,sa);
fmt.Printf("copy to da(len=%d)\tcopied=%d\t%v\n",len(da),cc,da)
da = make([]string,10)
cc =copy(da,sa);
fmt.Printf("copy to da(len=%d)\tcopied=%d\t%v\n",len(da),cc,da)
}
---
Running...
copy to da(len=0) []
copy to da(len=5) copied=5 [0 1 2 3 4]
copy to da(len=10) copied=10 [0 1 2 3 4 5 6 7 8 9]
从上面运行结果,明显看出,目标切片大小0,容量10,copy不能复制。目标切片大小小于源切片大小,copy就按照目标切片大小复制,不会报错。
二、初始大小和容量
当我们使用make初始化切片的时候,必须给出size。go语言的书上一般都会告诉我们,当切片有足够大小的时候,append操作是非常快的。但是当给出初始大小后,我们得到的实际上是一个含有这个size数量切片类型的空元素,看例子:
func main(){
var ss=make([]string,10);
ss=append(ss,"last");
print("after append",ss)
}
---
Running...
[ after append ] : length:11 addr:0xc20804c000 isnil:false content:[ last]
实际上,此时我们应该先用下标为切片元素负值。但是如果我们既想有好的效率,有想继续使用append函数而不想区分是否有空的元素,此时就要请出make的第三个参数,容量,也就是我们通过传递给make,0的大小和足够大的容量数值就行了。
func main(){
var ss=make([]string,0,10);
ss=append(ss,"last");
print("after append",ss)
}
---
Running...
[ after append ] : length:1 addr:0xc20804a000 isnil:false content:[last]
三、切片的指针。
1,当我们用append追加元素到切片时,如果容量不够,go就会创建一个新的切片变量,看下面程序的执行结果:
func main() {
var sa []string
fmt.Printf("addr:%p \t\tlen:%v content:%v\n",sa,len(sa),sa);
for i:=0;i<10;i++{
sa=append(sa,fmt.Sprintf("%v",i))
fmt.Printf("addr:%p \t\tlen:%v content:%v\n",sa,len(sa),sa);
}
fmt.Printf("addr:%p \t\tlen:%v content:%v\n",sa,len(sa),sa);
}
---
Running ...
addr:0x0 len:0 content:[]
addr:0x1030e0c8 len:1 content:[0]
addr:0x10328120 len:2 content:[0 1]
addr:0x10322180 len:3 content:[0 1 2]
addr:0x10322180 len:4 content:[0 1 2 3]
addr:0x10342080 len:5 content:[0 1 2 3 4]
addr:0x10342080 len:6 content:[0 1 2 3 4 5]
addr:0x10342080 len:7 content:[0 1 2 3 4 5 6]
addr:0x10342080 len:8 content:[0 1 2 3 4 5 6 7]
addr:0x10324a00 len:9 content:[0 1 2 3 4 5 6 7 8]
addr:0x10324a00 len:10 content:[0 1 2 3 4 5 6 7 8 9]
addr:0x10324a00 len:10 content:[0 1 2 3 4 5 6 7 8 9]
//很明显,切片的地址经过了数次改变。
2,如果,在make初始化切片的时候给出了足够的容量,append操作不会创建新的切片:
func main() {
var sa = make ([]string,0,10);
fmt.Printf("addr:%p \t\tlen:%v content:%v\n",sa,len(sa),sa);
for i:=0;i<10;i++{
sa=append(sa,fmt.Sprintf("%v",i))
fmt.Printf("addr:%p \t\tlen:%v content:%v\n",sa,len(sa),sa);
}
fmt.Printf("addr:%p \t\tlen:%v content:%v\n",sa,len(sa),sa);
}
addr:0x10304140 len:0 content:[]
addr:0x10304140 len:1 content:[0]
addr:0x10304140 len:2 content:[0 1]
addr:0x10304140 len:3 content:[0 1 2]
addr:0x10304140 len:4 content:[0 1 2 3]
addr:0x10304140 len:5 content:[0 1 2 3 4]
addr:0x10304140 len:6 content:[0 1 2 3 4 5]
addr:0x10304140 len:7 content:[0 1 2 3 4 5 6]
addr:0x10304140 len:8 content:[0 1 2 3 4 5 6 7]
addr:0x10304140 len:9 content:[0 1 2 3 4 5 6 7 8]
addr:0x10304140 len:10 content:[0 1 2 3 4 5 6 7 8 9]
addr:0x10304140 len:10 content:[0 1 2 3 4 5 6 7 8 9]
//可见,切片的地址一直保持不变
3, 如果不能准确预估切片的大小,又不想改变变量(如:为了共享数据的改变),这时候就要请出指针来帮忙了,下面程序中,sa就是osa这个切片的指针,我们共享切片数据和操作切片的时候都使用这个切片地址就ok了,其本质上是:append操作亦然会在需要的时候构造新的切片,不过是将地址都保存到了sa中,因此我们通过该指针始终可以访问到真正的数据。
func main() {
var osa = make ([]string,0);
sa:=&osa;
for i:=0;i<10;i++{
*sa=append(*sa,fmt.Sprintf("%v",i))
fmt.Printf("addr of osa:%p,\taddr:%p \t content:%v\n",osa,sa,sa);
}
fmt.Printf("addr of osa:%p,\taddr:%p \t content:%v\n",osa,sa,sa);
}
---
Running...
addr of osa:0xc20800a220, addr:0xc20801e020 content:&[0]
addr of osa:0xc20801e0a0, addr:0xc20801e020 content:&[0 1]
addr of osa:0xc20803e0c0, addr:0xc20801e020 content:&[0 1 2]
addr of osa:0xc20803e0c0, addr:0xc20801e020 content:&[0 1 2 3]
addr of osa:0xc208050080, addr:0xc20801e020 content:&[0 1 2 3 4]
addr of osa:0xc208050080, addr:0xc20801e020 content:&[0 1 2 3 4 5]
addr of osa:0xc208050080, addr:0xc20801e020 content:&[0 1 2 3 4 5 6]
addr of osa:0xc208050080, addr:0xc20801e020 content:&[0 1 2 3 4 5 6 7]
addr of osa:0xc208052000, addr:0xc20801e020 content:&[0 1 2 3 4 5 6 7 8]
addr of osa:0xc208052000, addr:0xc20801e020 content:&[0 1 2 3 4 5 6 7 8 9]
addr of osa:0xc208052000, addr:0xc20801e020 content:&[0 1 2 3 4 5 6 7 8 9]
posted on 2016-01-13 11:18
思月行云 阅读(266)
评论(0) 编辑 收藏 引用 所属分类:
Golang