Problem Solving using C++

Algorithm Study using C++

2009年7月26日 #

博客移至http://libiao.appspot.com

博客移至http://libiao.appspot.com,专注于专注于FreeBSD,C/C++, Python,算法和服务器开发

posted @ 2009-07-26 22:12 Kingoal Lee's Alogrithm Study using cplusplus 阅读(358) | 评论 (0)编辑 收藏

2007年9月5日 #

单链表的翻转

非常简单的实现,设置3个指针,分别指向当前节点、前一个节点、后一个节点,然后依次处理所有的节点就OK了。
具体代码为:
#include <iostream>

using namespace std;

#ifndef 
null
#define 
null (void*)0
#endif

typedef struct node
{
    struct node
* next;
    
int data;
}node;

node
* head=(node*)null;

void reverse(node* root)
{
    node 
*cur,*pre,*next;
    
    pre
=(node*)null;
    cur
=root;
    next
=cur->next;
    
    
while(next)
    {
        cur
->next=pre;
        pre
=cur;
        cur
=next;
        next
=cur->next;
    }
    
    head
=cur;
    cur
->next=pre;
}

void insert(node* p)
{
    p
->next=head;
    head
=p;
}

void del(node* p)
{
    node 
*cur,*next;
    cur
=p;
    next
=p->next;
    
    
while(next)
    {
        delete cur;
        cur
=next;
        next
=cur->next;
    }
    
    delete cur;
}

void print(node* p)
{
    
while(p)
    {
        cout
<<p->data<<" ";
        p
=p->next;
    }
    
    cout
<<endl;
}

int main(int argc,char** argv)
{
    
for(int i=0;i<10;i++)
    {
        node
* p=new node;
        p
->next=(node*)null;
        p
->data=i;
        
        insert(p);
    }
    print(head);
    cout
<<"reverse order:"<<endl;
    
    reverse(head);
    print(head);
    
    del(head);
    
    
    system(
"pause");
    
return 0;
}


posted @ 2007-09-05 14:41 Kingoal Lee's Alogrithm Study using cplusplus 阅读(2013) | 评论 (0)编辑 收藏

2007年8月31日 #

求两排序数组的中位数

#include <iostream>
#include 
<string>

using namespace std;

int main(int argc,char* argv[])
{
    
int A[]={1,3,5,7,8,9};
    
int B[]={2,4,6,10,11,12,13,14};

    
int sizeA = sizeof(A)/sizeof(int);
    
int sizeB = sizeof(B)/sizeof(int);

    
int ma=0,na=sizeA-1;
    
int mb=0,nb=sizeB-1;

    
while(1)
    {
        
int ka=(na+ma+1)/2;
        
int kb=(nb+mb+1)/2;

        
if(na<ma)
        {
            cout
<<B[kb]<<endl;
            
break;
        }
        
if(nb<mb)
        {
            cout
<<A[ka]<<endl;
            
break;
        }
        
if(A[ka]==B[kb])//find the value
        {
            cout
<<A[ka]<<endl;
            
break;
        }

        
if((ma==na)&&((nb-mb+1)%2==0))//there is only one element at A[]
        {
            
if((A[na]<B[kb])&&(A[na]>=B[kb-1]))
            {
                cout
<<A[na]<<endl;
                
break;
            }
        }
        
if((ma==na)&&((nb-mb+1)%2))
        {
            
if((A[na]>B[kb])&&(A[na]<=B[kb+1]))
            {
                cout
<<A[na]<<endl;
                
break;
            }
        }

        
if((mb==nb)&&((na-ma+1)%2==0))//there is only one element at B[]
        {
            
if((B[nb]<A[ka])&&(B[nb]>=A[ka-1]))
            {
                cout
<<B[nb]<<endl;
                
break;
            }
        }
        
if((mb==nb)&&((na-ma+1)%2))
        {
            
if((B[nb]>A[ka])&&(B[nb]<=A[ka+1]))
            {
                cout
<<B[nb]<<endl;
                
break;
            }
        }

        
int offset=ka-ma;
        
if(offset>(kb-mb))
            offset
=kb-mb;
        
if(offset==0)
            offset
++;
        
//int offset=((ka>=kb)?ka:kb);

        
if(A[ka]<B[kb])
        {
            ma
+=offset;
            nb
-=offset;
        }

        
if(A[ka]>B[kb])
        {
            na
-=offset;
            mb
+=offset;
        }
    }

    system(
"pause");
    
return 0;
}

posted @ 2007-08-31 10:32 Kingoal Lee's Alogrithm Study using cplusplus 阅读(909) | 评论 (0)编辑 收藏

2007年8月29日 #

常用字符串string操作--find

#include <iostream>
#include 
<string>
#include 
<cctype>
#include 
<vector>
#include 
<algorithm>
#include 
<iterator>

using namespace std;

int main(int argc,char** argv[])
{
    string line1
="We were her pride of 10 she named us:";
    string line2
="Benjamin, Phoenix, the Prodigal";
    string line3
="and perspicacious pacific Suzanne";
    string sentence 
= line1+' '+line2+' '+line3;
    
    string separator(
" \n\t:,\r\v\f");
    vector
<string> longest,shortest;
    
int num = 0;
    string::size_type startpos
=0,endpos=0;
    string word;
    
int longLen=0,shortLen=-1,wordlen;
    
    
while((startpos=sentence.find_first_not_of(separator,endpos))!=string::npos)
    {
        
++num;
        
        endpos
=sentence.find_first_of(separator,startpos);
        
if(endpos==string::npos)
        {
            wordlen 
= sentence.size()-startpos;
        }
        
else
        {
            wordlen 
= endpos-startpos;
        }
        
        word.assign(sentence.begin()
+startpos,sentence.begin()+wordlen+startpos);
        
        startpos 
= sentence.find_first_not_of(separator,endpos);
        
        
if(shortLen==-1)
        {
            shortLen
=longLen=wordlen;
            shortest.push_back(word);
            longest.push_back(word);
            
            
continue;
        }
        
if(shortLen==wordlen)
        {
            shortest.push_back(word);
        }
        
if(shortLen>wordlen)
        {
            shortest.clear();
            shortest.push_back(word);
            shortLen 
= wordlen;
        }
        
if(wordlen==longLen)
        {
            longest.push_back(word);
        }
        
if(wordlen>longLen)
        {
            longest.clear();
            longest.push_back(word);
            longLen
=wordlen;
        }    
    }
    
    cout
<<"Words:"<<num<<endl;
    cout
<<"Shortest:"<<shortLen<<endl;
    copy(shortest.begin(),shortest.end(),ostream_iterator
<string>(cout," "));
    cout
<<endl;
    cout
<<"Longest:"<<longLen<<endl;
    copy(longest.begin(),longest.end(),ostream_iterator
<string>(cout," "));
    cout
<<endl;
    
    system(
"pause");
    
return 0;
}
#include <iostream>
#include 
<string>
#include 
<cctype>
#include 
<vector>
#include 
<algorithm>
#include 
<iterator>

using namespace std;

void str_replace(string& str,const string& src,const string& dst)
{
    string::size_type pos 
= 0;
    
int srclen = src.size();
    
int dstlen = dst.size();
    
    
while((pos = str.find(src,pos))!=string::npos)
    {
        
//str.replace(pos,srclen,dst);
        str.erase(pos,srclen);
        str.insert(pos,dst);
        pos
+=dstlen;
    }
}

int main(int argc,char** argv[])
{
    
//replace/erase/insert
    string str("I like apple,what about you? apple tastes great!");
    cout
<<str<<endl;
    str_replace(str,
"apple","banana");
    cout
<<str<<endl;
    
    
//assign/append
    string q1("When lilacs last in the dooryard bloom'd");
    string q2(
"The child is father of the man");
    string sentence;
    
    sentence.assign(q2.begin(),q2.begin()
+13);
    sentence.append(q1.substr(q1.find(
"in"),15));
    cout
<<sentence<<endl;
    
    system(
"pause");
    
return 0;
}

posted @ 2007-08-29 11:12 Kingoal Lee's Alogrithm Study using cplusplus 阅读(1165) | 评论 (0)编辑 收藏

2007年8月28日 #

STL常见操作(1)--排序

vector<int> vec;
generate_n(back_inserter(vec),100,rand);

sort(vec.begin(),vec.end());//or sort(vec.begin(),vec.end(),greater<int>());

copy(vec.begin(),vec.end(),ostream_iterator<int>(cout," "));

#include <iostream>
#include 
<functional>
#include 
<algorithm>
#include 
<iterator>
#include 
<vector>
#include 
<cstdlib>

using namespace std;

int main(int argc,char** argv)
{
    vector
<int> vec;
    generate_n(back_inserter(vec),
100,rand);
    
    copy(vec.begin(),vec.end(),ostream_iterator
<int>(cout," "));
    cout
<<endl;
    
    sort(vec.begin(),vec.end());
    
    copy(vec.begin(),vec.end(),ostream_iterator
<int>(cout," "));
    cout
<<endl;
    
    system(
"pause");
    
return 0;
}


posted @ 2007-08-28 10:54 Kingoal Lee's Alogrithm Study using cplusplus 阅读(210) | 评论 (0)编辑 收藏

2007年8月27日 #

partial_sort--基于堆排序

经常会出现求n个数中的前k个最小值(最大值),可以采取的策略为:

看n和k的大小,数组的规律。即便看情况也不一定有绝对的“最优"
如果是基本有序的,那么就用Hoare的算法,每次选中间位置的数当轴。
如果k或(n-k)是小常数,那么部分排序算法,比如用堆。
如果要抵抗算法复杂度攻击,那么可以考虑随机Hoare或者linear time selection.
在k为小值的时候,可以采用基于堆排序的部分排序方法:
代码如下:
#include <iostream>
#include 
<cstdlib>
#include 
<algorithm>
#include 
<iterator>

using namespace std;

void min_heapify(int arr[],int i,int size)
{
    
int left = 2*i+1;
    
int right = left+1;

    
int largest;

    
if((left<=size)&&(arr[left]>arr[i]))
    {
        largest 
= left;
    }
    
else
    {
        largest 
= i;
    }

    
if((right<=size)&&(arr[right]>arr[largest]))
    {
        largest 
= right;
    }

    
if(largest!=i)
    {
        
int temp = arr[i];
        arr[i]
=arr[largest];
        arr[largest]
=temp;

        min_heapify(arr,largest,size);
    }
}

void fillarray(int arr[],int size)
{
    
for(int i=0;i<size;i++)
    {
        arr[i]
=rand()%size;
    }
}

void print(const int arr[],int size)
{
    copy(arr,arr
+size,ostream_iterator<int>(cout," "));
    cout
<<endl;
}

int main(int argc,char* argv[])
{
    
int size,k;

    
while(cin>>size)
    {
        
int* buff=new int[size];

        fillarray(buff,size);
        print(buff,size);

        cout
<<"Please input the top k value:"<<endl;
        cin
>>k;

        
for(int i=(k-1)/2;i>=0;i--)
            min_heapify(buff,i,k
-1);

        print(buff,size);
        cout
<<endl<<endl;
        
for(int i=size-1;i>=k;i--)
        {
            
if(buff[i]<buff[0])
            {
                
int temp = buff[0];
                buff[
0]=buff[i];
                buff[i]
=temp;
    
                min_heapify(buff,
0,k-1);
            }
        }

        print(buff,size);

        delete [] buff;
    }
}


posted @ 2007-08-27 22:49 Kingoal Lee's Alogrithm Study using cplusplus 阅读(406) | 评论 (0)编辑 收藏

2007年8月24日 #

二叉搜索树操作(3)----非递归遍历

应用队列(queue)和栈(stack)对二叉搜索树进行非递归遍历
应用队列queue的是BFS,栈stack的是DFS
代码为:
#include <iostream>
#include 
<cstdlib>
#include 
<queue>
#include 
<stack>
#include 
<algorithm>

using namespace std;

#ifndef NULL
#define NULL 
0
#endif

#ifndef MAXSIZE
#define MAXSIZE    
10
#endif

typedef struct BST
//Binary Search Tree
{
    
int key;
    
//maybe there are some other satellites
    
    struct BST
* left;
    struct BST
* right;
    struct BST
* parent;
} BST;

BST
* root=NULL;

void BST_Insert(int key)//add value key to the Binary Search Tree
{
    BST
* y=NULL;//y records the parent node
    BST* x=root;//x records the current node
    
    BST
* node = new BST();
    node
->key = key;
    node
->left = NULL;
    node
->right = NULL;
    node
->parent = NULL;
    
    
while(x!=NULL)
    {
        y
=x;
        
        
if(key<x->key)
            x
=x->left;
        
else
            x
=x->right;
    }
    
    node
->parent=y;
    
    
if(y==NULL)
        root 
= node;
    
else
    {
        
if(key<y->key)
            y
->left=node;
        
else
            y
->right=node;
    }
}

void BST_Delete(BST* p)
{
    
if(p)
    {
        BST_Delete(p
->left);
        BST_Delete(p
->right);
        delete p;
    }
}

void BST_Build()
{
    
int temp;
    
    cout
<<"Original Input:"<<endl;
    
for(int i=0;i<MAXSIZE;i++)
    {
        temp
=rand()%MAXSIZE;
        cout
<<temp<<" ";
        BST_Insert(temp);
    }
    cout
<<endl;
}

void BST_Inorder_Walk(BST* p)
{
    
    
if(p)
    {
        BST_Inorder_Walk(p
->left);
        cout
<<p->key<<" ";
        BST_Inorder_Walk(p
->right);
    }
}

void BST_Preorder_Walk(BST* p)
{
    
    
if(p)
    {
        cout
<<p->key<<" ";
        BST_Preorder_Walk(p
->left);
        BST_Preorder_Walk(p
->right);
    }
}

void BST_Postorder_Walk(BST* p)
{
    
if(p)
    {
        BST_Postorder_Walk(p
->left);
        BST_Postorder_Walk(p
->right);
        cout
<<p->key<<" ";
    }
}

void BST_Layer_Walk()
{
    queue
<BST*> queue;
    BST
* p;
    queue.push(root);
    
    
while(!queue.empty())
    {
        p
=queue.front();
        
        queue.pop();
        
if(p->left)
            queue.push(p
->left);
        
if(p->right)
            queue.push(p
->right);
        
        cout
<<p->key<<" ";
    }
    
    cout
<<endl;
}

void Inorder_Walk(BST* node=root)
{
    stack
<BST*> stk;
    
    
while(!stk.empty()||node)
    {
        
if(node)
        {
            stk.push(node);
            node
=node->left;
        }
        
else
        {
            node
=stk.top();
            cout
<<node->key<<" ";
            stk.pop();
            node
=node->right;
        }
    }
}

void Preorder_Walk(BST* node=root)
{
    stack
<BST*> stk;
    
    
while(!stk.empty()||node)
    {
        
if(node)
        {
            cout
<<node->key<<" ";
            stk.push(node);
            node
=node->left;
        }
        
else
        {
            node
=stk.top();
            stk.pop();
            node
=node->right;
        }
    }
}

void Postorder_Walk(BST* node=root)
{
    stack
<BST*> stk;
    BST
* p;
    
int flag = 0;//0 stands for left, 1 stands for right

    
do
    {
        
while(node)
        {
            stk.push(node);
            node
=node->left;
        }
        
        p
=NULL;
        flag
=0;
        
        
while(!stk.empty()&&(flag==0))
        {
            node
=stk.top();
            
if(node->right==p)
            {
                stk.pop();
                p
=node;
                cout
<<node->key<<" ";
            }
            
else
            {
                node
= node->right;
                flag
=1;
            }
        }
    }
while(!stk.empty());
}

int main(int argc,char* argv[])
{
    
int input;
    
    BST_Build();
    
    cout
<<"Inorder Walk:"<<endl;
    
//BST_Inorder_Walk(root);
    Inorder_Walk();
    cout
<<endl;
    
    cout
<<"Preorder Walk:"<<endl;
    BST_Preorder_Walk(root);
    cout
<<endl;
    
    cout
<<"Stack Preorder Walk:"<<endl;
    Preorder_Walk(root);
    cout
<<endl;
    
    cout
<<"Postorder Walk:"<<endl;
    BST_Postorder_Walk(root);
    cout
<<endl;
    
    cout
<<"Stack Postorder Walk:"<<endl;
    Postorder_Walk(root);
    cout
<<endl;
    
    cout
<<"Layer Walk:"<<endl;
    BST_Layer_Walk();
    
    BST_Delete(root);
    
    cout
<<endl;
    system(
"pause");
    
return 0;
}


posted @ 2007-08-24 16:16 Kingoal Lee's Alogrithm Study using cplusplus 阅读(301) | 评论 (0)编辑 收藏

二叉搜索树操作(2)--其他

#include <iostream>
#include 
<cstdlib>
using namespace std;

#ifndef NULL
#define NULL 
0
#endif

#ifndef MAXSIZE
#define MAXSIZE    
10
#endif

typedef struct BST
//Binary Search Tree
{
    
int key;
    
//maybe there are some other satellites
    
    struct BST
* left;
    struct BST
* right;
    struct BST
* parent;
} BST;

BST
* root=NULL;

void BST_Insert(int key)//add value key to the Binary Search Tree
{
    BST
* y=NULL;//y records the parent node
    BST* x=root;//x records the current node
    
    BST
* node = new BST();
    node
->key = key;
    node
->left = NULL;
    node
->right = NULL;
    node
->parent = NULL;
    
    
while(x!=NULL)
    {
        y
=x;
        
        
if(key<x->key)
            x
=x->left;
        
else
            x
=x->right;
    }
    
    node
->parent=y;
    
    
if(y==NULL)
        root 
= node;
    
else
    {
        
if(key<y->key)
            y
->left=node;
        
else
            y
->right=node;
    }
}

void BST_Delete(BST* p)
{
    
if(p)
    {
        BST_Delete(p
->left);
        BST_Delete(p
->right);
        delete p;
    }
}

void BST_Build()
{
    
int temp;
    
    cout
<<"Original Input:"<<endl;
    
for(int i=0;i<MAXSIZE;i++)
    {
        temp
=rand()%MAXSIZE;
        cout
<<temp<<" ";
        BST_Insert(temp);
    }
    cout
<<endl;
}

void BST_Inorder_Walk(BST* p)
{
    
    
if(p)
    {
        BST_Inorder_Walk(p
->left);
        cout
<<p->key<<" ";
        BST_Inorder_Walk(p
->right);
    }
}

void BST_Preorder_Walk(BST* p)
{
    
    
if(p)
    {
        cout
<<p->key<<" ";
        BST_Preorder_Walk(p
->left);
        BST_Preorder_Walk(p
->right);
    }
}

void BST_Postorder_Walk(BST* p)
{
    
if(p)
    {
        BST_Postorder_Walk(p
->left);
        BST_Postorder_Walk(p
->right);
        cout
<<p->key<<" ";
    }
}

BST
* BST_Search(int key)
{
    BST
* x=root;
    
    
while(x)
    {
        
if(x->key==key)
            
return x;
        
else
            
if(x->key>key)
                x
=x->left;
            
else
                x
=x->right;
    }
    
    
return NULL;    
}

BST
* BST_Min(BST* p=root)
{
    
//BST* p = root;
    
    
while(p->left)
    {
        p
=p->left;
    }
    
    
return p;
}

BST
* BST_Max(BST* p=root)
{
    
//BST* p = root;
    
    
while(p->right)
    {
        p
=p->right;
    }
    
    
return p;
}

BST
* BST_Successor(int key)
{
    BST
* p = BST_Search(key);
    BST
* y;
    
    
if(p)
    {
        
if(p->right)
        {
            
return BST_Min(p->right);
        }
        
        y
=p->parent;
        
while(y&&(y->right==p))
        {
            p
=y;
            y
=y->parent;
        }
        
        
return y;
    }
    
    
return NULL;
}

BST
* BST_Predecessor(int key)
{
    BST
* p = BST_Search(key);
    BST
* y;
    
    
if(p)
    {
        
if(p->left)
            
return BST_Max(p->left);
        
        y
=p->parent;
        
while(y&&(y->left==p))
        {
            p
=y;
            y
=y->parent;
        }
        
        
return y;
    }
    
    
return p;
}

BST
* BST_Delete(int key)
{
    BST
* p = BST_Search(key);
    BST
* y,*x;
    
    
if(p)
    {
        
if(!p->left||!p->right)
        {
            y
=p;
        }
        
else
            y
=BST_Successor(key);
            
        
if(y->left)
            x
=y->left;
        
else
            x
=y->right;
        
        
if(x!=NULL)
            x
->parent=y->parent;
            
        
if(!y->parent)
            root
=x;
        
else
        {
            
if(y==y->parent->left)
                y
->parent->left=x;
            
else
                y
->parent->right=x;
        }
        
        
if(y!=p)
            p
->key=y->key;
        
        
return y;
    }
    
    
return p;
}

int main(int argc,char* argv[])
{
    
int input;
    
    BST_Build();
    
    BST_Delete(
7);
    
    cout
<<"Inorder Walk:"<<endl;
    BST_Inorder_Walk(root);
    cout
<<endl;
    
    cout
<<"Preorder Walk:"<<endl;
    BST_Preorder_Walk(root);
    cout
<<endl;
    
    cout
<<"Postorder Walk:"<<endl;
    BST_Postorder_Walk(root);
    cout
<<endl;
    
    cout
<<"Min: "<<BST_Min()->key<<endl;
    cout
<<"Max: "<<BST_Max()->key<<endl;
    
    
while(1)
    {
        cin
>>input;
        
        
if(input==-1)
            
break;
        
        BST
* p;
        
if(p=BST_Search(input))
        {
            cout
<<"Parent="<<(p->parent)->key<<endl;
            
if(p->left)
                cout
<<"Left:"<<p->left->key<<endl;
            
if(p->right)
                cout
<<"Right:"<<p->right->key<<endl;
        }
        
else
        {
            cout
<<"Not found!"<<endl;
            
break;
        }
        
        
if(p=BST_Predecessor(input))
        {
            cout
<<"Predecessor:"<<p->key<<endl;
        }
        
        
if(p=BST_Successor(input))
        {
            cout
<<"Successor:"<<p->key<<endl;
        }
    }
    
    BST_Delete(root);
    
    cout
<<endl;
    system(
"pause");
    
return 0;
}

posted @ 2007-08-24 12:35 Kingoal Lee's Alogrithm Study using cplusplus 阅读(174) | 评论 (0)编辑 收藏

二叉搜索树操作(1)----生成

二叉搜索树是专门有利于搜索(时间复杂度为logn)的二叉树。
生成一棵二叉搜索树关键是不断地插入数据到该树中,若当前的root为NULL,则当前插入的节点为root,否则比较左右树插入,直到为NULL为之。
二叉搜索树的插入代码为:
void BST_Insert(int key)
{
    构建当前节点current,初始化current,设置其value=key,左右父节点都为NULL;
   //用x,y两个指针来跟踪current放置的位置
   y=NULL;
  x=root;

  while(x)//x有下面的节点时
    {  
         y=x;
         x的key和当前参数里面的key做对比,若大于当前key,则x=left[x],否则x=right[x];
    }

  比较y和NULL的关系,若y==NULL,则root=NULL,有root=current;
  设置parent[current]=y;
  比较current的key和y的key的大小,若大,则left[y]=current,否则right[y]=current;
//插入完毕
}
使用代码表示为:
#include <iostream>
#include 
<cstdlib>
using namespace std;

#ifndef NULL
#define NULL 
0
#endif

#ifndef MAXSIZE
#define MAXSIZE    
10
#endif

typedef struct BST
//Binary Search Tree
{
    
int key;
    
//maybe there are some other satellites
    
    struct BST
* left;
    struct BST
* right;
    struct BST
* parent;
} BST;

BST
* root=NULL;

void BST_Insert(int key)//add value key to the Binary Search Tree
{
    BST
* y=NULL;//y records the parent node
    BST* x=root;//x records the current node
    
    BST
* node = new BST();
    node
->key = key;
    node
->left = NULL;
    node
->right = NULL;
    node
->parent = NULL;
    
    
while(x!=NULL)
    {
        y
=x;
        
        
if(key<x->key)
            x
=x->left;
        
else
            x
=x->right;
    }
    
    node
->parent=y;
    
    
if(y==NULL)
        root 
= node;
    
else
    {
        
if(key<y->key)
            y
->left=node;
        
else
            y
->right=node;
    }
}

void BST_Delete(BST* p)
{
    
if(p)
    {
        BST_Delete(p
->left);
        BST_Delete(p
->right);
        delete p;
    }
}

void BST_Build()
{
    
int temp;
    
    
for(int i=0;i<MAXSIZE;i++)
    {
        temp
=rand()%MAXSIZE;
        cout
<<temp<<" ";
        BST_Insert(temp);
    }
    cout
<<endl;
}

void BST_Inorder_Walk(BST* p)
{
    
if(p)
    {
        BST_Inorder_Walk(p
->left);
        cout
<<p->key<<" ";
        BST_Inorder_Walk(p
->right);
    }
}

int main(int argc,char* argv[])
{
    BST_Build();
    BST_Inorder_Walk(root);
    BST_Delete(root);
    
    cout
<<endl;
    system(
"pause");
    
return 0;
}


posted @ 2007-08-24 09:19 Kingoal Lee's Alogrithm Study using cplusplus 阅读(529) | 评论 (0)编辑 收藏

2007年8月23日 #

选择算法--Random Select

从一个乱序数组A[1....n]中选择排第i的数,就是经典的选择select问题
最Naive的办法就是先对整个数组进行排序(可以使用quicksort/merge sort/heap sort)但是其算法复杂度为O(nlogn),如果使用quicksort的partition的变种的话,其最差复杂度为O(n^2),但是平均复杂度为O(n).其核心算法如下:
int randselect(int p,int r,int i)
{
    if(p==r)
          return arr[p];
   int q = partition(p,r);//调用quicksort里面的partition
   int k = q-p+1;
   if(i==k)
           return arr[q];
   if(i<k)
           return randselect(p,q-1,i);
   if(i>k)
           return randselect(q+1,r,i-k);
}

代码如下:

#include <iostream>
#include 
<iterator>
#include 
<algorithm>
#include 
<cstdlib>

using namespace std;

#define MAXSIZE    
100
int arr[MAXSIZE];

void fillarray()
{
    
for(int i=0;i<MAXSIZE;i++)
    {
        arr[i]
=rand()%MAXSIZE;
    }
}

void print(bool flag=true)
{
    
if(flag)
    {
        copy(arr,arr
+MAXSIZE,ostream_iterator<int>(cout," "));
        cout
<<endl;
    }
}

int partition(int p,int r)
{
    
int pivot = arr[r];
   
    
int i=p-1;
    
for(int j=p;j<r;j++)
    {
        
if(arr[j]<pivot)
        {
            i
++;
           
            
int temp = arr[j];
            arr[j]
=arr[i];
            arr[i]
=temp;
        }
    }
   
    arr[r]
=arr[i+1];
    arr[i
+1]=pivot;
   
    
return i+1;
}

void quicksort(int p,int r)
{
    
if(p<r)
    {
        
int q=partition(p,r);
        quicksort(p,q
-1);
        quicksort(q
+1,r);
    }
}

int randselect(int p,int r,int i)
{
    
if(p==r)
        
return arr[p];
       
    
int q = partition(p,r);
    
int k = q-p+1;
    
if(i==k)
        
return arr[q];
    
if(i<k)
        
return randselect(p,q-1,i);
    
if(i>k)
        
return randselect(q+1,r,i-k);
}

int main(int argc,char* argv[])
{
    fillarray();
    print();
   
    
//quicksort(0,MAXSIZE-1);
    
//print();
    for(int i=0;i<MAXSIZE;i++)
        cout
<<randselect(0,MAXSIZE-1,i+1)<<" ";
   
    cout
<<endl;
   
    system(
"pause");
    
return 0;
}

posted @ 2007-08-23 10:35 Kingoal Lee's Alogrithm Study using cplusplus 阅读(871) | 评论 (0)编辑 收藏

仅列出标题  下一页

My Links

Blog Stats

常用链接

留言簿(1)

随笔档案

搜索

最新评论

阅读排行榜

评论排行榜