Points Within Time Limit: 2 Seconds Memory Limit: 65536 KB
Statement of the Problem
Several drawing applications allow us to draw polygons and almost all of them allow us to fill them with some color. The task of filling a polygon reduces to knowing which points are inside it, so programmers have to colour only those points.
You're expected to write a program which tells us if a given point lies inside a given polygon described by the coordinates of its vertices. You can assume that if a point is in the border of the polygon, then it is in fact inside the polygon.
Input Format
The input file may contain several instances of the problem. Each instance consists of: (i) one line containing integers N, 0 < N < 100 and M, respectively the number of vertices of the polygon and the number of points to be tested. (ii) N lines, each containing a pair of integers describing the coordinates of the polygon's vertices; (iii) M lines, each containing a pair of integer coordinates of the points which will be tested for "withinness" in the polygon.
You may assume that: the vertices are all distinct; consecutive vertices in the input are adjacent in the polygon; the last vertex is adjacent to the first one; and the resulting polygon is simple, that is, every vertex is incident with exactly two edges and two edges only intersect at their common endpoint. The last instance is followed by a line with a 0 (zero).
Output Format
For the ith instance in the input, you have to write one line in the output with the phrase "Problem i:", followed by several lines, one for each point tested, in the order they appear in the input. Each of these lines should read "Within" or "Outside", depending on the outcome of the test. The output of two consecutive instances should be separated by a blank line.
Sample Input
3 1 0 0 0 5 5 0 10 2 3 2 4 4 3 1 1 2 1 3 2 2 0
Sample Output
Problem 1: Outside
Problem 2: Outside Within
#include <stdio.h> #include <math.h>
double D,M,A,J,jtime, jtimeaccellimit, jtimespeedlimit, jtimedistlimit, atime, dist, delta, a, b, c, r;
double cubrt(double x) { return (exp(log(x)/3)); }
main(){ while (4 == scanf("%lf%lf%lf%lf",&D,&M,&A,&J)) { jtimeaccellimit = A/J; jtimespeedlimit = sqrt(M/J); jtimedistlimit = cubrt(D/2/J); jtime = jtimeaccellimit; if (jtimespeedlimit < jtime) jtime = jtimespeedlimit; if (jtimedistlimit < jtime) jtime = jtimedistlimit; atime = (M - J*pow(jtime,2))/A; a = 0.5*A; b = A*jtime + 0.5*J*pow(jtime,2); c = J * pow(jtime,3) - D/2; r = (-b + sqrt(b*b - 4*a*c))/2/a; if (r < atime) atime = r; dist = J * pow(jtime,3) + 0.5*J*pow(jtime,2)*atime + 0.5*A * pow(atime,2) + A * atime*jtime; printf("%0.1lf\n",4*jtime+2*atime+2*(D/2-dist)/M); } }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/15/2250031.html
Probability
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2313 Accepted Submission(s): 1146
Problem Description
Mickey is interested in probability recently. One day , he played a game which is about probability with mini.First mickey gives a letter and a word to mini.Then mini calculate the probability that the letter appears in the word.For example,give you the letter "a" and the word "apple". the probability of this case is 0.20000.
Input
The input contains several test cases. Each test case consists of a letter and a word.The length of the word is no longer than 200.
Output
For each test case, print the probability rounded to five digits after the decimal point.
Sample Input
Sample Output
Author
KiKi
Source
Recommend
威士忌
#include<stdio.h> #include<string.h> char str[210]; int main() { char ch1,ch2; while(scanf("%c %s",&ch1,&str)!=EOF) { if(ch1>='a'&&ch1<='z')ch2=ch1-'a'+'A'; else ch2=ch1-'A'+'a'; int len=strlen(str); int tt=0; for(int i=0;i<len;i++) { if(str[i]==ch1||str[i]==ch2)tt++; } printf("%.5lf\n",(double)tt/len); getchar(); } return 0; }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/15/2249142.html
/* 题意:就是给你一个有2^n个输入的门电路,初始输入为全0,问至少要改变输入 开关多少次(即改变输入中0、1多少次)才能得到所需的0、1输出序列。
题意分析:
这道题的数据范围为k<10000,所以不能枚举暴搞,只能用递推来求解。
仔细分析就可一发现当有多个0或多个1在一起时,是不用改变开关的。只有 在输出序列中出现0到1或1到0的跳变时才需要改变开关。
*/
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int ch[10010]; char str[10010]; int n; int solve(int i)//递归求从0变1需要的至少次数 { if(2*i+1>=n-1) { if(ch[i]==0)return 1; else return 2; } if(ch[i]==1) return solve(2*i+1)+solve(2*i+2); else return min(solve(2*i+1),solve(2*i+2)); } int main() { freopen("test.in","r",stdin); freopen("test.out","w",stdout); int T; scanf("%d",&T); while(T--) { scanf("%d",&n); scanf("%s",&str); for(int i=0;i<n-1;i++) { scanf("%d",&ch[i]); } int m=solve(0); //printf("%d\n",m); int res; if(str[0]=='0') res=0; else res=1; int len=strlen(str); for(int i=1;i<len;i++)//找变化的次数,1变0,0变1 { if(str[i]!=str[i-1])res++; } if(res)res+=m-1;//加上第一次变1 的次数,以后改变只需要一次就好了 printf("%d\n",res); } return 0; }
1A,好爽,去福州前去刷刷水题很痛快。。。。期待福州拿牌回来。。。
Sheryl's Circuit I
Time Limit: 1000MS |
|
Memory Limit: 65536K |
Total Submissions: 1037 |
|
Accepted: 430 |
Description
In the Design of Digital Logic class, Sheryl is asked to design a device which can produce a digital signal (a sequence of 0 and 1), given by the professor. After several sleepless nights, she completes a kind of Boolean circuit which looks like a complete binary tree as showed in Figure 1. Every node of the tree is a Boolean arithmetic unit (BAU) which takes in inputs from its both children and produce an output to its parent. The inputs of BAU are either 1 or 0, and the output should be calculated due to the type of BAU which is either ∧ or ∨. The truth tables of the two types are also showed in Figure 1. The INPUT of Sheryl's circuit is the sequence of inputs of the lowest-level BAUs and the OUTPUT is the output of the top BAU.
 Figure 1
To accomplish the assignment, Sheryl has to manually handle the INPUT to produce the expected signal. For example, assuming Sheryl's circuit is the one showed in Figure 1, when the professor wants (0, 0, 0, 1, 1, 1) as the signal, the INPUT may alter as this: (0, 0, 0, 0) -> (0, 0, 1, 1) -> (1, 1, 0, 0) -> (1, 1, 1, 1) -> (1, 0, 1, 0) -> (0, 1, 0, 1). But this is too complex because Sheryl has to change the INPUT 14(2 + 4 + 2 + 2 + 4) times totally! So a more clever way is preferable, say (0, 0, 0, 0) -> (0, 0, 0, 0) -> (0, 0, 0, 0) -> (0, 1, 0, 1) -> (0, 1, 0, 1) -> (0, 1, 0, 1), which requires only 2(0 + 0 + 2 + 0 +0) changes of the INPUT.
Given Sheryl's circuit and the signal expected, your task is to find the minimal changes of the INPUT to produce the signal. Note the INPUT begins with all 0s.
Input
There are multiple test cases. The first line contains the number of test cases. Each test case begins with an integer N( ≤ 10000), the number of inputs of Sheryl's circuit. It is guaranteed that N equals 2k, where k is an integer. The next line contains the expected signal which consists of 0 and 1 only. The length of the signal is no more than 10000. Next N - 1 numbers describe the types of the BAUs, 0 for ∨ and 1 for ∧. The describing order is from top level to bottom level. For the same level it is from left to right.
Output
For each test case output the minimal number of changes in a separate line.
Sample Input
2
4
010101
0 0 0
4
111111
1 1 1
Sample Output
5
4
Source
题意:就是给你一个有2^n个输入的门电路,初始输入为全0,问至少要改变输入开关多少次(即改变输入中0、1多少次)才能得到所需的0、1输出序列。
题意分析:
这道题的数据范围为k<10000,所以不能枚举暴搞,只能用递推来求解。
仔细分析就可一发现当有多个0或多个1在一起时,是不用改变开关的。只有在输出序列中出现0到1或1到0的跳变时才需要改变开关。
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/14/2248770.html
Problem 1021 飞船赛
Accept: 1368 Submit: 5167 Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
有N个飞船进行比赛,它们的跑道为直线并互相平行。每个飞船的起跑位置均不相同。第i个飞船从起跑线右边Xi处开始向右行驶(Xi各不相同)。比赛开始后,它能在零时间内加速到最大速度Vi并永远保持此速度。比赛没有终点,即会永远进行下去。
你的任务是算出比赛过程中一共有多少次"超车"。
Input
输入数据由多组数据组成。每组数据格式如下: 第一行为一个整数N(1<=N<=250000)。 接下来的N行,每行两个整数Xi (0≤Xi≤10^6)和Vi(0<Vi<100),描述了一辆飞船的起跑位置和最大速度。 给出的飞船信息按照起跑位置Xi的升序排列,即X1<X2<X3<…<Xn。 最后一组数据N=0,标志输入结束,不需要处理。
Output
对于每组数据,输出仅一行包含一个整数,即"超车"的次数对1000000的模。
Sample Input
4 0 2 2 1 3 8 6 3 0
Sample Output
2
#include<stdio.h> #include<string.h> #include<iostream> using namespace std; const int mod=1000000; int v[102]; int main() { int x,a; int n; int sum; while(scanf("%d",&n),n) { memset(v,0,sizeof(v)); sum=0; for(int i=0;i<n;i++) { scanf("%d%d",&x,&a); v[a]++; for(int j=a+1;j<102;j++) sum+=v[j]; sum%=mod; } printf("%d\n",sum); } return 0; }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/14/2248202.html
最优连通子集
Time Limit: 1000MS |
|
Memory Limit: 10000K |
Total Submissions: 1649 |
|
Accepted: 855 |
Description
众所周知,我们可以通过直角坐标系把平面上的任何一个点P用一个有序数对(x, y)来唯一表示,如果x, y都是整数,我们就把点P称为整点,否则点P称为非整点。我们把平面上所有整点构成的集合记为W。 定义1 两个整点P1(x1, y1), P2(x2, y2),若|x1-x2| + |y1-y2| = 1,则称P1, P2相邻,记作P1~P2,否则称P1, P2不相邻。 定义 2 设点集S是W的一个有限子集,即S = {P1, P2,..., Pn}(n >= 1),其中Pi(1 <= i <= n)属于W,我们把S称为整点集。 定义 3 设S是一个整点集,若点R, T属于S,且存在一个有限的点序列Q1, Q2, ?, Qk满足: 1. Qi属于S(1 <= i <= k); 2. Q1 = R, Qk = T; 3. Qi~Qi + 1(1 <= i <= k-1),即Qi与Qi + 1相邻; 4. 对于任何1 <= i < j <= k有Qi ≠ Qj; 我们则称点R与点T在整点集S上连通,把点序列Q1, Q2,..., Qk称为整点集S中连接点R与点T的一条道路。 定义4 若整点集V满足:对于V中的任何两个整点,V中有且仅有一条连接这两点的道路,则V称为单整点集。 定义5 对于平面上的每一个整点,我们可以赋予它一个整数,作为该点的权,于是我们把一个整点集中所有点的权的总和称为该整点集的权和。 我们希望对于给定的一个单整点集V,求出一个V的最优连通子集B,满足: 1. B是V的子集 2. 对于B中的任何两个整点,在B中连通; 3. B是满足条件(1)和(2)的所有整点集中权和最大的。
Input
第1行是一个整数N(2 <= N <= 1000),表示单整点集V中点的个数; 以下N行中,第i行(1 <= i <= N)有三个整数,Xi, Yi, Ci依次表示第i个点的横坐标,纵坐标和权。同一行相邻两数之间用一个空格分隔。-10^6 <= Xi, Yi <= 10^6;-100 <= Ci <= 100。
Output
仅一个整数,表示所求最优连通集的权和。
Sample Input
5
0 0 -2
0 1 1
1 0 1
0 -1 1
-1 0 1
Sample Output
2
Source
/********************************************* POJ1192最优连通子集 题目意思:如果两个点的距离相差一,则两个点相邻或着说连通。 求:连通图的最大加权和。
思路:对给出的 n 个点建树,然后就是灰常简单的树形DP了。
f[ p ] 表示节点 p 含有的最大值,最后用个for循环遍历各个节点找出最大加权和。
**********************************************/ #include<iostream> #include<stdio.h> #include<vector> #include<math.h> using namespace std; const int MAXN=1005; int n; bool used[MAXN]; int f[MAXN]; struct Node { int x,y,v; }tt[MAXN]; vector<int>child[MAXN]; bool near(int p,int q)//判断两个整点是否相邻 { if(fabs((double)tt[p].x-tt[q].x)+fabs((double)tt[p].y-tt[q].y)==1)return true; return false; } void dfs(int p) { used[p]=true; for(int i=1;i<=n;i++) { if(!used[i]&&near(p,i)) { child[p].push_back(i); dfs(i); } } } void recur(int p) { if(child[p].size()==0) { f[p]=tt[p].v; return; } for(int i=0;i<child[p].size();i++) recur(child[p][i]); f[p]=tt[p].v; for(int i=0;i<child[p].size();i++) if(f[child[p][i]]>0)f[p]+=f[child[p][i]]; } int main() { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d%d%d",&tt[i].x,&tt[i].y,&tt[i].v); for(int i=1;i<=n;i++) child[i].clear(); memset(used,false,sizeof(used)); dfs(1); recur(1); int ans=0; //for(int i=1;i<=n;i++) //if(f[i]>ans)ans=f[i]; printf("%d\n",f[1]); system("pause"); return 0; }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/13/2247173.html
Break the Chocolate
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 427 Accepted Submission(s): 142
Problem Description
 Benjamin is going to host a party for his big promotion coming up. Every party needs candies, chocolates and beer, and of course Benjamin has prepared some of those. But as everyone likes to party, many more people showed up than he expected. The good news is that candies are enough. And for the beer, he only needs to buy some extra cups. The only problem is the chocolate. As Benjamin is only a 'small court officer' with poor salary even after his promotion, he can not afford to buy extra chocolate. So he decides to break the chocolate cubes into smaller pieces so that everyone can have some. He have two methods to break the chocolate. He can pick one piece of chocolate and break it into two pieces with bare hand, or put some pieces of chocolate together on the table and cut them with a knife at one time. You can assume that the knife is long enough to cut as many pieces of chocolate as he want. The party is coming really soon and breaking the chocolate is not an easy job. He wants to know what is the minimum number of steps to break the chocolate into unit-size pieces (cubes of size 1 × 1 × 1). He is not sure whether he can find a knife or not, so he wants to know the answer for both situations.
Input
The first line contains an integer T(1<= T <=10000), indicating the number of test cases. Each test case contains one line with three integers N,M,K(1 <=N,M,K <=2000), meaning the chocolate is a cube of size N ×M × K.
Output
For each test case in the input, print one line: "Case #X: A B", where X is the test case number (starting with 1) , A and B are the minimum numbers of steps to break the chocolate into N × M × K unit-size pieces with bare hands and knife respectively.
Sample Input
Sample Output
Case #1: 2 2 Case #2: 7 3
Source
初看感觉非常简单,但是陷阱很多!!!!!!
先把N,M,K从小到大排序。
然后用手扮的次数就是:(N-1)+N*(M-1+M*(K-1))=N*M*K-1;
就是先扮截面积最大的面,就是分最小的N,要N-1次,之后就有了N个M*K了,类似办法,要M-1+M*(K-1);
但是这里一定要用long long ,int会超出的。(这里注意,比赛果然不一样,陷阱很多,下次注意了)
然后用到的时候。其实是分别切N,M,K。
切N是要[log2(N)]往上取整。往上取整我是加了0.999,不知道大牛们有没有更好的办法!!有的话请留言噢~~~~
切M和K类似。
具体看代码:
#include<stdio.h> #include<math.h> int main() { int T; int iCase=0; int n,m,k; scanf("%d",&T); while(T--) { iCase++; scanf("%d%d%d",&n,&m,&k); int t1=n,t2,t3=n; if(m<t1)t1=m; if(k<t1)t1=k; if(m>t3)t3=m; if(k>t3)t3=k; t2=n+m+k-t1-t3; n=t1;m=t2;k=t3; int res=0; if(n>1)res+=(int)(log(1.0*n)/log(2.0)+0.999);//往上取整 if(m>1)res+=(int)(log(1.0*m)/log(2.0)+0.999); if(k>1)res+=(int)(log(1.0*k)/log(2.0)+0.999); long long res1=(long long)n*m*k-1; printf("Case #%d: %I64d %d\n",iCase,res1,res); } return 0; }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/12/2246500.html
Fast Food
Time Limit: 1000MS |
|
Memory Limit: 10000K |
Total Submissions: 1597 |
|
Accepted: 553 |
|
Special Judge |
Description
The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.
To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.
The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as
n ∑ |di - (position of depot serving restaurant i)| i=1
must be as small as possible.
Write a program that computes the positions of the k depots, such that the total distance sum is minimized.
Input
The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.
The input file will end with a case starting with n = k = 0. This case should not be processed.
Output
For each chain, first output the number of the chain. Then output an optimal placement of the depots as follows: for each depot output a line containing its position and the range of restaurants it serves. If there is more than one optimal solution, output any of them. After the depot descriptions output a line containing the total distance sum, as defined in the problem text.
Output a blank line after each test case.
Sample Input
6 3
5
6
12
19
20
27
0 0
Sample Output
Chain 1
Depot 1 at restaurant 2 serves restaurants 1 to 3
Depot 2 at restaurant 4 serves restaurants 4 to 5
Depot 3 at restaurant 6 serves restaurant 6
Total distance sum = 8
Source
【题目大意】
一条公路上有n个旅馆,选出其中k个设置仓库,一个仓库可服务若干个旅馆,一个旅馆只需一个仓库服务。问在哪几个旅馆设置仓库,每个仓库服务哪些旅馆,可使得旅馆到仓库的总距离最小,并求出总距离(长理只要求求最后一步)。
【数据范围】
1 <= n <= 200, 1 <= k <= 30, k <= n
【解题思想】
1、此题属于明显动态规划题,关键点是找状态转移方程。
2、可以用sum[i][j]表示前i个旅馆,设置j个仓库得到的距离和最小值,那么sum[n][k]即为所求。
3、找sum[i][j]的子结构,假设前j-1个仓库服务第1个到第k个旅馆,则最后一个仓库服务第k+1个到第i个旅馆。
4、可以用one[i][j]表示一个仓库服务第i个到第j个旅馆,到这个仓库距离和的最小值。
5、则得到状态转移方程:sum[i][j]=min(sum[k][j-1]+one[k+1][i]) (j-1<=k<=i-1,min表示所有k取值得到的值中的最小值)。
6、问题转换为了求one[i][j],即在第i到第j家旅馆中设置一个仓库的总距离。
7、假设i到j共有奇数家旅馆,我们尝试将仓库放置在中间旅馆,即旅馆(i+j)/2,假设将仓库左移距离x,则右半边所有旅馆到仓库距离均加x,而只有部分左半边旅馆距离减少了x,剩下的减少均小于x,甚至不减少。因此可以得到,将仓库从中间位置左移到任何位置总距离都会增加,右移同理,因此仓库放到旅馆(i+j)/2最合适。
8、假设i到j共有偶数家旅馆,容易得到将仓库放到(i+j-1)/2和(i+j+1)/2得到的总距离相等(对称性),若将仓库放到(i+j-1)/2,并左移,则用7相似的想法可得知总距离增大,右移情况同理,由此得知仓库放到(i+j-1)/2这个位置即可满足总距离最小。
9、由7、8得到one[i][j]实际上时将仓库放到(i+j)/2取整位置可得到最小的总距离。
10、数据范围较小,我们可以计算出一切one[i][j]的组合。
11、由于poj还要求输出在哪几个旅馆设置仓库,每个仓库服务哪些旅馆,因此还需要存储动态规划路径。
12、可用at[i][j],from[i][j],to[i][j]分别表示sum[i][j]得到最小值时最后一个仓库的位置、服务的起始位置和服务的终止位置。
13、通过递归输出结果。
#include<stdio.h> #include<algorithm> #include<string.h> using namespace std; const int INF=100000000; int r[300],sum[300][40],one[300][300];
int from[300][40],to[300][40],at[300][40];
int output(int i,int j) { if(j<=0||i<=0)return 1; int num=output(from[i][j]-1,j-1); printf("Depot %d at restaurant %d serves ",num,at[i][j]); if(from[i][j]==to[i][j])printf("restaurant %d\n",from[i][j]); else printf("restaurants %d to %d\n",from[i][j],to[i][j]); return num+1; }
int main() { int n,K,i,j,k,middle; int iCase=0; while(scanf("%d%d",&n,&K)!=EOF) { iCase++; if(n==0&&K==0)break; for(i=1;i<=n;i++)scanf("%d",&r[i]); memset(one,0,sizeof(one)); memset(sum,0,sizeof(sum)); for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { middle=(i+j)/2; for(k=i;k<middle;k++)one[i][j]+=r[middle]-r[k]; for(k=middle+1;k<=j;k++)one[i][j]+=r[k]-r[middle]; } } for(i=1;i<=n;i++)sum[i][0]=INF; for(i=1;i<=n;i++) { for(j=1;j<=i&&j<=K;j++) { sum[i][j]=INF; for(k=j-1;k<=i-1;k++) { int tmp=sum[k][j-1]+one[k+1][i]; if(tmp<sum[i][j]) { sum[i][j]=tmp; from[i][j]=k+1; to[i][j]=i; at[i][j]=(k+1+i)/2; } } } } printf("Chain %d\n",iCase); output(n,K); printf("Total distance sum = %d\n\n",sum[n][K]); } return 0; }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/12/2246407.html
Counterfeit Dollar
Time Limit: 1000MS |
|
Memory Limit: 10000K |
Total Submissions: 30917 |
|
Accepted: 9680 |
Description
Sally Jones has a dozen Voyageur silver dollars. However, only eleven of the coins are true silver dollars; one coin is counterfeit even though its color and size make it indistinguishable from the real silver dollars. The counterfeit coin has a different weight from the other coins but Sally does not know if it is heavier or lighter than the real coins. Happily, Sally has a friend who loans her a very accurate balance scale. The friend will permit Sally three weighings to find the counterfeit coin. For instance, if Sally weighs two coins against each other and the scales balance then she knows these two coins are true. Now if Sally weighs one of the true coins against a third coin and the scales do not balance then Sally knows the third coin is counterfeit and she can tell whether it is light or heavy depending on whether the balance on which it is placed goes up or down, respectively. By choosing her weighings carefully, Sally is able to ensure that she will find the counterfeit coin with exactly three weighings.
Input
The first line of input is an integer n (n > 0) specifying the number of cases to follow. Each case consists of three lines of input, one for each weighing. Sally has identified each of the coins with the letters A--L. Information on a weighing will be given by two strings of letters and then one of the words ``up'', ``down'', or ``even''. The first string of letters will represent the coins on the left balance; the second string, the coins on the right balance. (Sally will always place the same number of coins on the right balance as on the left balance.) The word in the third position will tell whether the right side of the balance goes up, down, or remains even.
Output
For each case, the output will identify the counterfeit coin by its letter and tell whether it is heavy or light. The solution will always be uniquely determined.
Sample Input
1
ABCD EFGH even
ABCI EFJK up
ABIJ EFGH even
Sample Output
K is the counterfeit coin and it is light.
Source
枚举了所有的情况。12种,有一种假的,轻就设为-1,重为1,其余为0,至多12*2中情况。
#include<stdio.h> #include<string.h> int main() { char str[9][20]; int a[12]; int T; scanf("%d",&T); while(T--) { for(int i=0;i<9;i++)scanf("%s",&str[i]); int res=-1; while(res<12) { int t; if(res==-1){res=0;t=1;} else if(a[res]==1) t=-1; else {res++;t=1;} for(int i=0;i<12;i++) a[i]=0; a[res]=t; int L=0,R=0; int len=strlen(str[0]); for(int i=0;i<len;i++) L+=a[str[0][i]-'A']; len=strlen(str[1]); for(int i=0;i<len;i++) R+=a[str[1][i]-'A']; if(strcmp(str[2],"even")==0) { if(L!=R)continue; } if(strcmp(str[2],"up")==0) if(L<=R)continue; if(strcmp(str[2],"down")==0) if(L>=R)continue; L=0,R=0; len=strlen(str[3]); for(int i=0;i<len;i++) L+=a[str[3][i]-'A']; len=strlen(str[4]); for(int i=0;i<len;i++) R+=a[str[4][i]-'A']; if(strcmp(str[5],"even")==0) { if(L!=R)continue; } if(strcmp(str[5],"up")==0) if(L<=R)continue; if(strcmp(str[5],"down")==0) if(L>=R)continue; L=0,R=0; len=strlen(str[6]); for(int i=0;i<len;i++) L+=a[str[6][i]-'A']; len=strlen(str[7]); for(int i=0;i<len;i++) R+=a[str[7][i]-'A']; if(strcmp(str[8],"even")==0) { if(L!=R)continue; } if(strcmp(str[8],"up")==0) if(L<=R)continue; if(strcmp(str[8],"down")==0) if(L>=R)continue; break; } printf("%c is the counterfeit coin and it is ",res+'A'); if(a[res]==-1) printf("light.\n"); else printf("heavy.\n"); } return 0; }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/12/2246372.html
Zombie’s Treasure Chest
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 994 Accepted Submission(s): 211
Problem Description
Some brave warriors come to a lost village. They are very lucky and find a lot of treasures and a big treasure chest, but with angry zombies. The warriors are so brave that they decide to defeat the zombies and then bring all the treasures back. A brutal long-drawn-out battle lasts from morning to night and the warriors find the zombies are undead and invincible. Of course, the treasures should not be left here. Unfortunately, the warriors cannot carry all the treasures by the treasure chest due to the limitation of the capacity of the chest. Indeed, there are only two types of treasures: emerald and sapphire. All of the emeralds are equal in size and value, and with infinite quantities. So are sapphires. Being the priest of the warriors with the magic artifact: computer, and given the size of the chest, the value and size of each types of gem, you should compute the maximum value of treasures our warriors could bring back.
Input
There are multiple test cases. The number of test cases T (T <= 200) is given in the first line of the input file. For each test case, there is only one line containing five integers N, S1, V1, S2, V2, denoting the size of the treasure chest is N and the size and value of an emerald is S1 and V1, size and value of a sapphire is S2, V2. All integers are positive and fit in 32-bit signed integers.
Output
For each test case, output a single line containing the case number and the maximum total value of all items that the warriors can carry with the chest.
Sample Input
2 100 1 1 2 2 100 34 34 5 3
Sample Output
Source
Recommend
lcy
#include<stdio.h> #include<algorithm> using namespace std; long long gcd(long long da,long long xiao) { long long temp; while(xiao!=0) { temp=da%xiao; da=xiao; xiao=temp; } return da; } int main() { int iCase=0; int T; scanf("%d",&T); long long N,S1,V1,S2,V2; while(T--) { iCase++; scanf("%I64d%I64d%I64d%I64d%I64d",&N,&S1,&V1,&S2,&V2); long long tmp=S1*S2/gcd(S1,S2); long long res; long long tt=N/tmp; N=N%tmp; if(tt) { tt--; N+=tmp; } res=max((tt)*(tmp/S1)*V1,(tt)*(tmp/S2)*V2); long long res2=0; if(S2>S1) { long long t; t=S1;S1=S2;S2=t; t=V1;V1=V2;V2=t; } for(int i=0;i<=N/S1;i++) { if(res2<i*V1+(N-i*S1)/S2*V2)res2=i*V1+(N-i*S1)/S2*V2; } res+=res2; printf("Case #%d: %I64d\n",iCase,res); } return 0; }
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/07/2240182.html
What Is Your Grade?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4032 Accepted Submission(s): 1198
Problem Description
“Point, point, life of student!” This is a ballad(歌谣)well known in colleges, and you must care about your score in this exam too. How many points can you get? Now, I told you the rules which are used in this course. There are 5 problems in this final exam. And I will give you 100 points if you can solve all 5 problems; of course, it is fairly difficulty for many of you. If you can solve 4 problems, you can also get a high score 95 or 90 (you can get the former(前者) only when your rank is in the first half of all students who solve 4 problems). Analogically(以此类推), you can get 85、80、75、70、65、60. But you will not pass this exam if you solve nothing problem, and I will mark your score with 50. Note, only 1 student will get the score 95 when 3 students have solved 4 problems. I wish you all can pass the exam! Come on!
Input
Input contains multiple test cases. Each test case contains an integer N (1<=N<=100, the number of students) in a line first, and then N lines follow. Each line contains P (0<=P<=5 number of problems that have been solved) and T(consumed time). You can assume that all data are different when 0<p. A test case starting with a negative integer terminates the input and this test case should not to be processed.
Output
Output the scores of N students in N lines for each case, and there is a blank line after each case.
Sample Input
4 5 06:30:17 4 07:31:27 4 08:12:12 4 05:23:13 1 5 06:30:17 -1
Sample Output
Author
lcy
#include<stdio.h> #include<algorithm> #include<stdlib.h>//qsort #include<iostream> #include<string.h> using namespace std; struct Node { int num;//输入的原始编号 int n;//正确解题数 int fen;//分数 int time;//用掉的时间 }node[110]; int cmp1(const void *a,const void *b) { struct Node *c=(Node *)a; struct Node *d=(Node *)b; if(c->n == d->n)return c->time - d->time; return d->n - c->n; } int cmp2(const void *a,const void *b) { struct Node *c=(Node *)a; struct Node *d=(Node *)b;\ return c->num - d->num; } int main() { int n,i,j,k; int sum[10]; int tol[10]; int h,m,s; while(scanf("%d",&n)) { if(n<0)break; memset(sum,0,sizeof(sum)); memset(tol,0,sizeof(tol)); for(i=0;i<n;i++) { scanf("%d %d:%d:%d",&node[i].n,&h,&m,&s); node[i].num=i; node[i].time=h*3600+m*60+s; sum[node[i].n]++; } for(i=4;i>0;i--) { tol[i]=tol[i+1]; tol[i]+=sum[i+1]; } qsort(node,n,sizeof(node[0]),cmp1); for(i=0;i<n;i++) { node[i].fen=node[i].n*10+50; if(node[i].n>=1&&node[i].n<5&&(((i+1)-tol[node[i].n])<=sum[node[i].n]/2)) node[i].fen+=5; } qsort(node,n,sizeof(node[0]),cmp2); for(i=0;i<n;i++) { printf("%d\n",node[i].fen); } printf("\n"); } return 0;
}
文章来源: http://www.cnblogs.com/kuangbin/archive/2011/11/01/2232037.html
|
|
|
| 日 | 一 | 二 | 三 | 四 | 五 | 六 |
---|
26 | 27 | 28 | 29 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|
公告
导航
统计
- 随笔: 100
- 文章: 0
- 评论: 2
- 引用: 0
常用链接
留言簿
随笔分类
随笔档案
博客
搜索
最新评论

阅读排行榜
评论排行榜
|
|