随笔 - 2, 文章 - 0, 评论 - 0, 引用 - 0
数据加载中……

置顶随笔

[置顶]select I/O模型

选择(select)模型是Winsock中最常见的 I/O模型。核心便是利用 select 函数,实现对 I/O的管理!
利用 select 函数来判断某Socket上是否有数据可读,或者能否向一个套接字写入数据,防止程序在Socket处于阻塞模式中时,
在一次 I/O 调用(如send或recv、accept等)过程中,被迫进入“锁定”状态;同时防止在套接字处于非阻塞模
式中时,产生WSAEWOULDBLOCK错误。
█ select 的函数原型如下:
int select(
  __in          int nfds,
  __in_out      fd_set* readfds,
  __in_out      fd_set* writefds,
  __in_out      fd_set* exceptfds,
  __in          const struct timeval* timeout
);
其中,第一个参数nfds会被忽略。之所以仍然要提供这个参数,只是为了保持与Berkeley套接字兼容。
后面大家看到有三个 fd_set类型的参数:
一个用于检查可读性(readfds),
一个用于检查可写性(writefds),
一个用于例外数据(exceptfds)。
fd_set 结构的定义如下:
typedef struct fd_set { 
 u_int fd_count;
 SOCKET fd_array[FD_SETSIZE];
} fd_set;
#define FD_SETSIZE      64
所以 fd_set 结构中最多只能监视64个套接字。
fdset 代表着一系列特定套接字的集合。其中, readfds 集合包括符合下述任何一个条件的套接字:
● 有数据可以读入。
● 连接已经关闭、重设或中止。
● 假如已调用了listen,而且一个连接正在建立,那么accept函数调用会成功。
writefds 集合包括符合下述任何一个条件的套接字:
● 有数据可以发出。
● 如果已完成了对一个非锁定连接调用的处理,连接就会成功。
exceptfds 集合包括符合下述任何一个条件的套接字:
● 假如已完成了对一个非锁定连接调用的处理,连接尝试就会失败。
● 有带外(Out-of-band,OOB)数据可供读取。
举个例子,假设我们想测试一个套接字是否“可读”,必须将自己的套接字增添到readfds集合中,
然后调用 select 函数并等待其完成。select 完成之后,再次判断自己的套接字是否仍为 readfds 集合的一部分。
若答案是肯定的,则表明该套接字“可读”,可立即着手从它上面读取数据。
在三个参数中(readfds、writefds 和 exceptfds),任何两个都可以是空值( NULL);
但是,至少有一个不能为空值!在任何不为空的集合中,必须包含至少一个套接字句柄;
否则, select 函数便没有任何东西可以等待。最后一个参数 timeout 对应的是一个指针,它指向一个timeval 结构,
用于决定select 最多等待 I/O操作完成多久的时间。如 timeout 是一个空指针,那么 select 调用会无限
期地“锁定”或停顿下去,直到至少有一个描述符符合指定的条件后结束。
对 timeval 结构的定义如下:
tv_sec 字段以秒为单位指定等待时间;
tv_usec 字段则以毫秒为单位指定等待时间。
1秒 = 1000毫秒
若将超时值设置为(0 , 0),表明 select 会立即返回,出于对性能方面的考虑,应避免这样的设置。
█ select 函数返回值:
select 成功完成后,会在 fdset 结构中,返回刚好有未完成的 I/O操作的所有套接字句柄的总量。
若超过 timeval 设定的时间,便会返回0。若 select 调用失败,都会返回 SOCKET_ERROR,
应该调用 WSAGetLastError 获取错误码!
用 select 对套接字进行监视之前,必须将套接字句柄分配给一个fdset的结构集合,
之后再来调用 select,便可知道一个套接字上是否正在发生上述的 I/O 活动。
Winsock 提供了下列宏操作,可用来针对 I/O活动,对 fdset 进行处理与检查:
● FD_CLR(s, *set):从set中删除套接字s。
● FD_ISSET(s, *set):检查s是否set集合的一名成员;如答案是肯定的是,则返回TRUE。
● FD_SET(s, *set):将套接字s加入集合set。
● FD_ZERO( * set):将set初始化成空集合。
例如,假定我们想知道是否可从一个套接字中安全地读取数据,同时不会陷于无休止的
“锁定”状态,便可使用 FDSET 宏,将自己的套接字分配给 fdread 集合,再来调用 select。要
想检测自己的套接字是否仍属 fdread 集合的一部分,可使用 FD_ISSET 宏。采用下述步骤,便
可完成用 select 操作一个或多个套接字句柄的全过程:
1) 使用FDZERO宏,初始化一个fdset对象;
2) 使用FDSET宏,将套接字句柄加入到fdset集合中;
3) 调用 select 函数,等待其返回……select 完成后,会返回在所有 fdset 集合中设置的套接字句柄总数,
并对每个集合进行相应的更新。
4) 根据 select的返回值和 FDISSET宏,对 fdset 集合进行检查。
5) 知道了每个集合中“待决”的 I/O操作之后,对 I/O进行处理,
然后返回步骤1 ),继续进行 select 处理。
select 函数返回后,会修改 fdset 结构,删除那些不存在待决 I/O 操作的套接字句柄。
这正是我们在上述的步骤 ( 4 ) 中,为何要使用 FDISSET 宏来判断一个特定的套接字是否仍在集合中的原因。

posted @ 2012-07-17 21:56 肥安 阅读(344) | 评论 (0)编辑 收藏

2012年7月16日

socket阻塞与非阻塞区别(转)

简单点说:

阻塞就是干不完不准回来,  
非组赛就是你先干,我现看看有其他事没有,完了告诉我一声

我们拿最常用的send和recv两个函数来说吧...
比如你调用send函数发送一定的Byte,在系统内部send做的工作其实只是把数据传输(Copy)到TCP/IP协议栈的输出缓冲区,它执行成功并不代表数据已经成功的发送出去了,如果TCP/IP协议栈没有足够的可用缓冲区来保存你Copy过来的数据的话...这时候就体现出阻塞和非阻塞的不同之处了:对于阻塞模式的socket send函数将不返回直到系统缓冲区有足够的空间把你要发送的数据Copy过去以后才返回,而对于非阻塞的socket来说send会立即返回WSAEWOULDDBLOCK告诉调用者说:"发送操作被阻塞了!!!你想办法处理吧..."
对于recv函数,同样道理,该函数的内部工作机制其实是在等待TCP/IP协议栈的接收缓冲区通知它说:嗨,你的数据来了.对于阻塞模式的socket来说如果TCP/IP协议栈的接收缓冲区没有通知一个结果给它它就一直不返回:耗费着系统资源....对于非阻塞模式的socket该函数会马上返回,然后告诉你:WSAEWOULDDBLOCK---"现在没有数据,回头在来看看"

扩展:

在进行网络编程时,我们常常见到同步、异步、阻塞和非阻塞四种调用方式。这些方式彼此概念并不好理解。下面是我对这些术语的理解。
同步
      所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回。按照这个定义,其实绝大多数函数都是同步调用(例如sin, isdigit等)。但是一般而言,我们在说同步、异步的时候,特指那些需要其他部件协作或者需要一定时间完成的任务。最常见的例子就是 SendMessage。该函数发送一个消息给某个窗口,在对方处理完消息之前,这个函数不返回。当对方处理完毕以后,该函数才把消息处理函数所返回的 LRESULT值返回给调用者。
异步
      异步的概念和同步相对。当一个异步过程调用发出后,调用者不能立刻得到结果。实际处理这个调用的部件在完成后,通过状态、通知和回调来通知调用者。以 CAsycSocket类为例(注意,CSocket从CAsyncSocket派生,但是起功能已经由异步转化为同步),当一个客户端通过调用 Connect函数发出一个连接请求后,调用者线程立刻可以朝下运行。当连接真正建立起来以后,socket底层会发送一个消息通知该对象。这里提到执行 部件和调用者通过三种途径返回结果:状态、通知和回调。可以使用哪一种依赖于执行部件的实现,除非执行部件提供多种选择,否则不受调用者控制。如果执行部 件用状态来通知,那么调用者就需要每隔一定时间检查一次,效率就很低(有些初学多线程编程的人,总喜欢用一个循环去检查某个变量的值,这其实是一种很严重 的错误)。如果是使用通知的方式,效率则很高,因为执行部件几乎不需要做额外的操作。至于回调函数,其实和通知没太多区别。
阻塞
     阻塞调用是指调用结果返回之前,当前线程会被挂起。函数只有在得到结果之后才会返回。有人也许会把阻塞调用和同步调用等同起来,实际上他是不同的。对于同 步调用来说,很多时候当前线程还是激活的,只是从逻辑上当前函数没有返回而已。例如,我们在CSocket中调用Receive函数,如果缓冲区中没有数 据,这个函数就会一直等待,直到有数据才返回。而此时,当前线程还会继续处理各种各样的消息。如果主窗口和调用函数在同一个线程中,除非你在特殊的界面操 作函数中调用,其实主界面还是应该可以刷新。socket接收数据的另外一个函数recv则是一个阻塞调用的例子。当socket工作在阻塞模式的时候, 如果没有数据的情况下调用该函数,则当前线程就会被挂起,直到有数据为止。
非阻塞
      非阻塞和阻塞的概念相对应,指在不能立刻得到结果之前,该函数不会阻塞当前线程,而会立刻返回。
对象的阻塞模式和阻塞函数调用
对象是否处于阻塞模式和函数是不是阻塞调用有很强的相关性,但是并不是一一对应的。阻塞对象上可以有非阻塞的调用方式,我们可以通过一定的API去轮询状 态,在适当的时候调用阻塞函数,就可以避免阻塞。而对于非阻塞对象,调用特殊的函数也可以进入阻塞调用。函数select就是这样的一个例子。

阻塞通信

--------------------------------------------------------------------------------

通过重叠通信和计算在许多系统能提高性能。由一个智能通信控制器自动地执行通信的系统是真实的。轻-重线索是取得这种重叠的一种机制。导致好性能的 一个可选的机制是使用非阻塞通信。一个阻塞发送开始调用初始化这个发送操作,但不完成它。在这个消息被从这个发送缓存拷出以前,这个发送开始调用将返回。 需要一个独立的“发送完成”调用完成这个通信,例如,检验从发送缓存拷出的数据。用适当的硬件,在发送被初始化后和它完成以前,来自发送者存储的数据转换 可以和在发送者完成的计算同时进行。类似地,一个非阻塞“接收开始调用”初始化这个接收操作, 但不完成它。在一个消息被存入这个接收缓存以前,这个调用将返回。须要一个独立的“接收完成”调用完成这个接收操作,并检验被接收到这个接收缓存的数据。 用适当的硬件,在接收操作初始化后和它完成以前,到接收者存储的数据转换可以和计算同时进行。非阻塞接收的使用虽着信息较早地在接收缓存位置被提供,也可 以避免系统缓存和存储器到存储器拷贝。

非阻塞发送开始调用能使用与阻塞发送一样的四种模式: 标准, 缓存, 同步和准备好模式。这些具有同样的意义。无论一个匹配接收是否已登入,能开始除“准备好”以外的所有模式的发送;只要一个匹配接收已登入,就能开始一个非 阻塞“准备好”发送。在所有情况下,发送开始调用是局部的:无论其它进程的状态如何,它立刻返回。如果这个调用使得一些系统资源用完,那么它将失败并返回 一个错误代码。高质量的MPI实现应保证这种情况只在“病态”时发生。即,一个MPI实现将能支持大数量挂起非阻塞操作。  

当数据已被从发送缓存拷出时,这个发送完成调用返回。它可以带有附加的意义,这取决于发送模式。  

如果发送模式是“同步的”,那么只有一个匹配接收已开始这个发送才能完成。即,一个接收已被登入,并已和这个发送匹配。这时,这个发送完成调用是非 局部的。注意,在接收完成调用发生以前,如果一个同步、非阻塞发送和一个非阻塞接收匹配, 它可以完成。(发送者一“知道”转换将结束,它就能完成,但在接收者“知道”转换将结束以前)。  

如果发送模式是“缓存”,并没有挂起接收,那么消息必须被缓存。这时,发送完成调用是局部的,而且无论一个匹配接收的状态如何,它必须成功。  

如果发送模式是标准的,同时这个消息被缓存,那么在一个匹配接收发生以前,发送结束调用可以返回。另一方面,发送完成直到一个匹配接收发生才可以完成,并且这个消息已被拷到接收缓存。  

非阻塞发送能被用阻塞接收匹配,反过来也可以。   

给用户的建议. 一个发送操作的完成, 对于标准模式可以被延迟, 对于同部模式必须延迟, 直到一个匹配接收登入。这两种情况下非阻塞发送的使用允许发送者提前于接收者进行,以便在两进程的速度方面,计算更容忍波动。  

缓存和准备好模式中的非阻塞发送有一个更有限的影响。一可能一个非阻塞发送将返回,而一个阻塞发送将在数据被从发送者存储拷出后返回。只要在数据拷贝能和计算同时的情况下,非阻塞发送的使用有优点。  

消息发送模式隐含着由发送者初始化通信。当发送者初始化通信(数据被直接移到接收缓存, 并不要求排队一个挂起发送请求) 时,如果一个接收已登入,这个通信一般将有较低的额外负担。但是,只在匹配发送已发生后,一个接收操作能完成。当非阻塞接收等待发送时,没有阻塞接收,它 的使用允许得到较低的通信额外负担。(给用户的建议结束)。

posted @ 2012-07-16 21:47 肥安 阅读(282) | 评论 (0)编辑 收藏