Animating with Time
In the olden days, games were made to animate graphics based on every frame
processed. To ensure that the animations always ran at the same speed, those
games sometimes limited the number of frames per second that could be processed.
Of course, those old games were made for computers that couldn't easily process
more than 20 to 30 frames per second, so it was safe to assume that limiting the
number of frames per second would never surpass that 20 or 30 frames per second
mark.
But that was then, and this is now. Modern computers can run circles around
their ancestors, and limiting the number of frames to control animation is a
definite no−no in this day and age. You need to base the speed of animation on
the amount of time that has elapsed since the start of the animation sequence.
Doing so is no problem because you already know that you can record the time
when the animation started. Additionally, for each frame to update, you can read
the current time and subtract the starting animation time. The result is a time
value to use as an offset to your animation sequence.
Suppose you are using time−based key frames in your animation engine. You can
use a simple key−frame structure that stores the time and a transformation
matrix to use, such as this:
typedef struct sKeyframe {
DWORD Time;
D3DMATRIX matTransformation;
} sKeyframe;
As is typical for key frames, you can store an array of matrices, each with
its own unique time. These structures are stored in chronological order, with
the lower time values first. Therefore, you can create a small sequence of
transformations to orient an object over time (see Figure 2.1).
To replicate the key frames shown in Figure 2.1, I've constructed the
following array:
sKeyframe Keyframes[4] = {
{ 0, 1.00000f, 0.00000f, 0.00000f, 0.00000f,
0.00000f, 1.00000f, 0.00000f, 0.00000f,
0.00000f, 0.00000f, 1.00000f, 0.00000f,
0.00000f, 0.00000f, 0.00000f, 1.00000f; },
{ 400, 0.000796f, 1.00000f, 0.00000f, 0.00000f,
−1.00000f, 0.000796f, 0.00000f, 0.00000f,
0.00000f, 0.00000f, 1.00000f, 0.00000f,
50.00000f, 0.00000f, 0.00000f, 1.00000f; },
{ 800, −0.99999f, 0.001593f, 0.00000f, 0.00000f,
−0.001593f, −0.99999f, 0.00000f, 0.00000f,
0.00000f, 0.00000f, 1.00000f, 0.00000f,
25.00000f, 25.00000f, 0.00000f, 1.00000f; },
{ 1200, 1.00000f, 0.00000f, 0.00000f, 0.00000f,
0.00000f, 1.00000f, 0.00000f, 0.00000f,
0.00000f, 0.00000f, 1.00000f, 0.00000f,
0.00000f, 0.00000f, 0.00000f, 1.00000f; }
};
Now comes the fun part. Using the timing methods you read about previously,
you can record the time at which the animation started. And, for each frame to
update the animation, you can calculate the elapsed time since the animation
started (using that as an offset to the key frames). Create a simple frame
update function that will determine which transformation to use depending on the
elapsed time since the update function was first called.
void FrameUpdate()
{
static DWORD StartTime = timeGetTime();
DWORD Elapsed = timeGetTime() − StartTime;
With the elapsed time now in hand, you can scan the key frames to look for
the two between which the time value lies. For example, if the current time is
60 milliseconds, the animation is somewhere between key frame #0 (at 0
milliseconds) and key frame #1 (at 400 milliseconds). A quick scan through the
key frames determines which to use based on the elapsed time.
DWORD Keyframe = 0; // Start at 1st keyframe
for(DWORD i=0;i<4;i++) {
// If time is greater or equal to a key−frame's time then update the
keyframe to use
if(Time >= Keyframes[i].Time)
Keyframe = i;
}
At the end of the loop, the Keyframe variable will hold the first of the two
key frames between which the animation time lies. If Keyframe isn't the last key
frame in the array (in which there are four key frames), then you can add 1 to
Keyframe to obtain the second key frame. If Keyframe is the last key frame in
the array, you can use the same key−frame value in your calculations.
Using a second variable to store the next key frame in line is perfect.
Remember that if Keyframe is the last key frame in the array, you need to set
this new key frame to the same value.
DWORD Keyframe2 = (Keyframe==3) ? Keyframe:Keyframe +
1;
Now you need to grab the time values and calculate a scalar based on the time
difference of the keys and the position of the key frame between the keys.
DWORD TimeDiff = Keyframes[Keyframe2].Time −
Keyframes[Keyframe].Time;
// Make sure there's a time difference to avoid
divide−by−zero errors later on.
if(!TimeDiff)
TimeDiff=1;
float Scalar = (Time − Keyframes[Keyframe].Time) /
TimeDiff;
You now have the scalar value (which ranges from 0 to 1) used to interpolate
the transformation matrices of the keys. To make it easy to deal with the
transformation matrices, those matrices are cast to a D3DXMATRIX type so that
D3DX does the hard work for you.
// Calculate the difference in transformations
D3DXMATRIX matInt = D3DXMATRIX(Keyframes[Keyframe2].matTransformation) −
D3DXMATRIX(Keyframes[Keyframe].matTransformation);
matInt *= Scalar; // Scale the difference
// Add scaled transformation matrix back to 1st
keyframe matrix
matInt += D3DXMATRIX(Keyframes[Keyframe].matTransformation);
At this point, you have the proper animated transformation matrix to use
stored in matInt. To see your hard work come to life, set matInt as the world
transformation and render your animated mesh.
Main Routine:
#include <windows.h>
#include "d3d9.h"
#include "d3dx9.h"
#include "Direct3D.h"
IDirect3D9* g_d3d;
IDirect3DDevice9* g_device;
D3DXMESHCONTAINER_EX* g_robot_mesh_container;
struct sKeyFrame
{
DWORD time;
D3DMATRIX mat_trans;
};
// NOTE: transfromation matrix of key frame 0 is same as key frame 3.
sKeyFrame g_key_frames[4] =
{
// key_frame 1, 0ms
{ 0, 1.000000f, 0.000000f, 0.000000f, 0.000000f,
0.000000f, 1.000000f, 0.000000f, 0.000000f,
0.000000f, 0.000000f, 1.000000f, 0.000000f,
0.000000f, 0.000000f, 0.000000f, 1.000000f },
// key_frame 2, 40ms
{ 400, 0.000796f, 1.000000f, 0.000000f, 0.000000f,
-1.000000f, 0.000796f, 0.000000f, 0.000000f,
0.000000f, 0.000000f, 1.000000f, 0.000000f,
50.000000f, 0.000000f, 0.000000f, 1.000000f },
// key_frame 3, 80ms
{ 800, -0.999999f, 0.001593f, 0.000000f, 0.000000f,
-0.001593f, -0.999999f, 0.000000f, 0.000000f,
0.000000f, 0.000000f, 1.000000f, 0.000000f,
25.000000f, 25.000000f, 0.000000f, 1.000000f },
// key_frame 4, 120ms
{ 1200, 1.000000f, 0.000000f, 0.000000f, 0.000000f,
0.000000f, 1.000000f, 0.000000f, 0.000000f,
0.000000f, 0.000000f, 1.000000f, 0.000000f,
0.000000f, 0.000000f, 0.000000f, 1.000000f }
};
const char g_class_name[] = "TimeAnimClass";
const char g_caption[] = "Timed Animation";
LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam);
bool do_init(HWND hwnd);
void do_shutdown();
void do_frame();
//////////////////////////////////////////////////////////////////////////////////////////////
int PASCAL WinMain(HINSTANCE inst, HINSTANCE, LPSTR, int cmd_show)
{
CoInitialize(NULL); // Initialize the COM system
WNDCLASSEX win_class;
// Create the window class here and register it
win_class.cbSize = sizeof(win_class);
win_class.style = CS_CLASSDC;
win_class.lpfnWndProc = window_proc;
win_class.cbClsExtra = 0;
win_class.cbWndExtra = 0;
win_class.hInstance = inst;
win_class.hIcon = LoadIcon(NULL, IDI_APPLICATION);
win_class.hCursor = LoadCursor(NULL, IDC_ARROW);
win_class.hbrBackground = NULL;
win_class.lpszMenuName = NULL;
win_class.lpszClassName = g_class_name;
win_class.hIconSm = LoadIcon(NULL, IDI_APPLICATION);
if(!RegisterClassEx(&win_class))
return FALSE;
// Create the main window
HWND hwnd = CreateWindow(g_class_name, g_caption, WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
0, 0, 640, 480, NULL, NULL, inst, NULL);
if(hwnd == NULL)
return FALSE;
ShowWindow(hwnd, cmd_show);
UpdateWindow(hwnd);
// Call init function and enter message pump
if(do_init(hwnd))
{
MSG msg;
ZeroMemory(&msg, sizeof(MSG));
// Start message pump, waiting for user to exit
while(msg.message != WM_QUIT)
{
if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
do_frame(); // Render a single frame
}
}
do_shutdown();
UnregisterClass(g_class_name, inst);
CoUninitialize();
return 0;
}
LRESULT FAR PASCAL window_proc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
// Only handle window destruction messages
switch(msg)
{
case WM_DESTROY:
PostQuitMessage(0);
break;
case WM_KEYDOWN:
if(wParam == VK_ESCAPE)
DestroyWindow(hwnd);
break;
}
return DefWindowProc(hwnd, msg, wParam, lParam);
}
bool do_init(HWND hwnd)
{
init_d3d(&g_d3d, &g_device, hwnd, false, false);
if(FAILED(load_mesh(&g_robot_mesh_container, g_device, "..\\Data\\robot.x", "..\\Data\\", 0, 0)))
return FALSE;
// setup a directional light
D3DLIGHT9 light;
ZeroMemory(&light, sizeof(D3DLIGHT9));
light.Type = D3DLIGHT_DIRECTIONAL;
light.Diffuse.r = light.Diffuse.g = light.Diffuse.b = light.Diffuse.a = 1.0f;
light.Direction = D3DXVECTOR3(0.0f, -0.5f, 0.5f);
g_device->SetLight(0, &light);
g_device->LightEnable(0, TRUE);
return true;
}
void do_shutdown()
{
// free mesh data
delete g_robot_mesh_container;
g_robot_mesh_container = NULL;
// release D3D objects
release_com(g_device);
release_com(g_d3d);
}
void do_frame()
{
static DWORD start_time = timeGetTime();
DWORD elapsed_time = timeGetTime() - start_time;
// bounds the time to the animation time, important!!
elapsed_time %= (g_key_frames[3].time + 1);
// dertermin which keyframe to use
DWORD key_frame = 0;
for(DWORD i = 0; i < 4; i++)
{
// if time is greater or equal to a key-frame's time then update the keyframe to use
if(elapsed_time >= g_key_frames[i].time)
key_frame = i;
}
// get second key frame
DWORD key_frame_2 = (key_frame == 3) ? key_frame : (key_frame + 1);
// Calculate the difference in time between keyframes and calculate a scalar value to use
// for adjusting the transformations.
DWORD time_diff = g_key_frames[key_frame_2].time - g_key_frames[key_frame].time;
if(time_diff == 0)
time_diff = 1;
float scalar = (float)(elapsed_time - g_key_frames[key_frame].time) / time_diff;
// calculate the difference in transformations
D3DXMATRIX mat = D3DXMATRIX(g_key_frames[key_frame_2].mat_trans) - D3DXMATRIX(g_key_frames[key_frame].mat_trans);
mat *= scalar; // scale the difference
// add scaled transformation matrix back to 1st key frame matrix
mat += D3DXMATRIX(g_key_frames[key_frame].mat_trans);
g_device->SetTransform(D3DTS_WORLD, &mat);
// set a view transformation matrix
D3DXMATRIX mat_view;
D3DXVECTOR3 eye(25.0f, 0.0f, -80.0f);
D3DXVECTOR3 at(25.0f, 0.0f, 0.0f);
D3DXVECTOR3 up(0.0f, 1.0f, 0.0f);
D3DXMatrixLookAtLH(&mat_view, &eye, &at, &up);
g_device->SetTransform(D3DTS_VIEW, &mat_view);
// clear the device and start drawing the scene
g_device->Clear(0, NULL, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, D3DCOLOR_RGBA(0, 0, 0, 255), 1.0f, 0);
g_device->BeginScene();
g_device->SetRenderState(D3DRS_LIGHTING, TRUE);
draw_mesh(g_robot_mesh_container);
g_device->SetRenderState(D3DRS_LIGHTING, FALSE);
g_device->EndScene();
g_device->Present(NULL, NULL, NULL, NULL);
}
Runtime Snap:
As you can see, using time−based animation is pretty simple. Even if you
don't use key frames in your animation, you can still rely on these methods of
using time in your own code. Now that you've seen how easy it is to use
time−based animation, take a look at how easy it is to use time−based movement.
download source file