|
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3265
 /**//*
题意:
给定N(N <= 50000)个中空的矩形纸片,求它们面积并。

解法:
离散化+线段树

思路:
2010年宁波区域赛的题,就是矩形面积并的一个变形,转化很容
易想到,将中空的矩形纸片分割成四个小的矩形然后求N*4个矩形的
面积并即可。
再总结一下矩形面积并的nlog(n)经典算法吧。首先我们将每个矩
形的纵向边投影到Y轴上,这样就可以把矩形的纵向边看成一个闭区间
,用线段树来维护这些矩形边的并。现在求的是矩形的面积并,于是可
以枚举矩形的x坐标,然后检测当前相邻x坐标上y方向的合法长度,两
者相乘就是其中一块面积,枚举完毕后就求得了所有矩形的面积并。
我的线段树结点描述保存了以下信息:区间的左右端点、结点所在
数组编号(因为采用静态结点可以大大节省申请空间的时间)、该结点
被竖直线段完全覆盖的次数Cover和当前结点的测度。测度是指相邻x坐
标之间有效的y方向的长度的和(要求在该区间内)。于是重点就在于
如何维护测度,我们将一个矩形分成两条竖直线段来存储,左边的边称
为入边,右边的边则为出边,然后把所有这些竖直线段按照x坐标递增排
序,每次进行插入操作,因为坐标有可能不是整数,所以必须在做这些
之前将y方向的坐标离散化到数组中,每次插入时如果当前区间被完全覆
盖,那么就要对Cover域进行更新,入边+1,出边-1。更新完毕后判断当
前结点的Cover域是否大于零,如果大于零那么当前节点的测度就是结点
管理区间在y轴上的实际长度,否则,如果是叶子节点,那么测度为0,
如果是内部结点,那么测度的值是左右儿子测度的和。这个更新是log(n)
的,所以,总的复杂度就是nlog(n)。
*/

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

typedef int Type;
#define ll __int64
#define maxn 200200

// 垂直线段
 struct VLine {
Type x;
Type y1, y2;
int val;
 VLine() {}
 VLine(int _x, int _y1, int _y2, int _v) {
x = _x;
y1 = _y1;
y2 = _y2;
val = _v;
}
};
vector <VLine> Vl;

 bool cmp(VLine a, VLine b) {
return a.x < b.x;
}

// 矩形
 struct Rectangle {
int x0, y0, x1, y1;
 Rectangle() {}
 Rectangle(int _x0, int _y0, int _x1, int _y1) {
x0 = _x0; y0 = _y0;
x1 = _x1; y1 = _y1;
}
};
vector <Rectangle> Rec;

int tmp[maxn], tmpsize;
int bin[maxn], size;

 struct Tree {
int p;
int l, r;
int nCover; // 被完全覆盖的次数
Type ylen; // 测度

 void Update() {
if(nCover > 0)
ylen = bin[r] - bin[l];
 else {
if(l + 1 == r)
ylen = 0;
 else {
ylen = T[p<<1].ylen + T[p<<1|1].ylen;
}
}
}

 int Mid() {
return (l + r) >> 1;
}
}T[maxn*4];

 void Build(int p, int l, int r) {
T[p].l = l;
T[p].r = r;
T[p].p = p;
T[p].ylen = T[p].nCover = 0;
if(l + 1 == r || l == r)
return ;
int mid = (l + r) >> 1;
Build(p<<1, l, mid);
Build(p<<1|1, mid, r);
}

 void Insert(int p, int l, int r, int val) {
 if(l <= T[p].l && T[p].r <= r) {
T[p].nCover += val;
T[p].Update();
return ;
}

int mid = T[p].Mid();
 if(l < mid) {
Insert(p<<1, l, r, val);
}
 if(mid < r) {
Insert(p<<1|1, l, r, val);
}
T[p].Update();
}

 void ProcessBinArray() {
sort(tmp, tmp + tmpsize);
bin[size = 1] = tmp[0];
int i;
 for(i = 1; i < tmpsize; i++) {
if(tmp[i] != tmp[i-1])
bin[++size] = tmp[i];
}
}

 int Binary(int v) {
int l = 1;
int r = size;
 while(l <= r) {
int m = (l + r) >> 1;
if(bin[m] == v)
return m;
 if(v > bin[m]) {
l = m + 1;
}else
r = m - 1;
}
}

 int main() {
int n;
int i, j;
Type x[4], y[4];
 while(scanf("%d", &n) != EOF && n) {
Rec.clear();
Vl.clear();
tmpsize = 0;

 for(i = 0; i < n; i++) {
 for(j = 0; j < 4; j++) {
scanf("%d %d", &x[j], &y[j]);
tmp[ tmpsize++ ] = y[j];
}
Rec.push_back(Rectangle(x[0], y[0], x[2], y[1]));
Rec.push_back(Rectangle(x[2], y[0], x[3], y[2]));
Rec.push_back(Rectangle(x[2], y[3], x[3], y[1]));
Rec.push_back(Rectangle(x[3], y[0], x[1], y[1]));
}
ProcessBinArray();

 for(i = 0; i < Rec.size(); i++) {
Rectangle& rt = Rec[i];
if(rt.x0 == rt.x1 || rt.y0 == rt.y1)
continue;
int y0 = Binary(rt.y0);
int y1 = Binary(rt.y1);
Vl.push_back(VLine(rt.x0, y0, y1, 1));
Vl.push_back(VLine(rt.x1, y0, y1, -1));
}
sort(Vl.begin(), Vl.end(), cmp);
Build(1, 1, size);

ll ans = 0;
 for(i = 0; i < Vl.size(); i++) {
 if(i) {
ans += (ll)(Vl[i].x - Vl[i-1].x) * T[1].ylen;
}
Insert(1, Vl[i].y1, Vl[i].y2, Vl[i].val);
}
printf("%I64d\n", ans);
}
return 0;
}
|