随笔-80  评论-24  文章-0  trackbacks-0
我们经常会遇到这样一类问题,比如有一些物品,每个物品都有两个属性,其中每个属性都是可比的,比如我们有一摞圆形烧饼,每个烧饼有直径和重量两个属性,且这两个属性不相关。那么我们如何将这些烧饼分成尽量少的堆,使得每堆烧饼都可以满足质量和直径均单调增(或者单调减)?
首先直观的想法是第一步肯定得按照质量(或者直径,均可)从小到大排序。排序完成之后质量已经满足要求了,但是直径并不一定也按照递增排好序了。该如何将该按质量排好序的序列分成最少数量的若干个子序列,使得子序列能够同时按照直径递增排列?
这时候Dilworth定理就派上用场了。
Dilworth定理大概意思是说:对于一个偏续集(X,<=),其最少链划分数等于其最长反链的长度。其中链的意思是满足a1<=a2<=a3<=...<=ai的i个偏序集中的元素。这里的<=并不一定是小于等于的意思,只是表达的是一种偏序关系。
Dilworth定理的证明就不说了,网上有现成的证明。
下面说说利用Dilworth定理来解决上面提到的问题。
心急的C小加问题摘自http://acm.nyist.net/JudgeOnline/problem.php?pid=236 
该问题和上面提到的烧饼问题类似,只不过改成了木棒,它要求将一堆木棒分成最少的堆数,使得每小堆木棒都能够按照长度和质量均递增的顺序排列。典型的Dilworth定理问题。
其实讲木棒按照长度递增排列之后,对质量的处理就成了寻找最长递减子序列的问题了。该问题有O(nlogn)的解法,不过先看O(n2)的解法:

 1 #include <cstdio>                                                                  
 2 #include <cstring>                                                                 
 3 #include <cstdlib>                                                                 
 4                                                                                    
 5 #define MAX 5005                                                                   
 6                                                                                    
 7 typedef struct {                                                                   
 8   int weight;                                                                      
 9   int length;                                                                      
10 }STICK;                                                                            
11                                                                                    
12 STICK sticks[MAX];                                                                 
13 //cur_maxlen_include_i[i]代表包含元素sticks[i].length的递减子序列的长度            
14 int cur_maxlen_include_i[MAX];                                                     
15 //cur_max_minelem[i]代表长度为i的递减子序列的最小元素的最大值                      
16 int cur_max_minelem[MAX];                                                          
17                                                                                    
18 int cmp(const void *a, const void *b) {                                            
19   STICK *x = (STICK *)a;                                                           
20   STICK *y = (STICK *)b;                                                           
21   if (x->length != y->length) {                                                    
22     return x->length - y->length;                                                  
23   } else {                                                                         
24     return x->weight - y->weight;                                                  
25   }                                                                                
26 }                                                                                  
27                                                                                    
28 int main() {
29   int T;                                                                           
30   scanf("%d", &T);                                                                 
31   while (T--) {
32     int N;                                                                         
33     int i, j;                                                                   
34     scanf("%d", &N);                                                            
35     for (i = 0; i < N; ++i) {                                                   
36       scanf("%d%d", &(sticks[i].length), &(sticks[i].weight));                  
37     }                                                                           
38     qsort(sticks, N, sizeof(STICK), cmp);                                       
39                                                                                 
40     //求最长递减子序列                                                          
41     memset(cur_maxlen_include_i, 0, sizeof(int) * MAX);                         
42     memset(cur_max_minelem, 0, sizeof(int) * MAX);                              
43                                                                                 
44     cur_maxlen_include_i[0] = 1;                                                
45     cur_max_minelem[1] = sticks[0].weight;                                      
46                                                                                 
47     int cur_maxlen = 1;                                                         
48     for (i = 1; i < N; ++i) {                                                   
49       cur_maxlen_include_i[i] = 1;                                              
50       for (j = cur_maxlen; j > 0; --j) {                                        
51         if (cur_max_minelem[j] > sticks[i].weight) {                            
52           cur_maxlen_include_i[i] = j + 1;                                      
53           break;                                                                
54         }                                                                       
55       }                                                                         
56       if (cur_maxlen_include_i[i] > cur_maxlen) {                               
57         cur_maxlen = cur_maxlen_include_i[i];                                   
58         cur_max_minelem[cur_maxlen] = sticks[i].weight;                         
59       } else if (cur_max_minelem[cur_maxlen_include_i[i]] < sticks[i].weight) { 
60         cur_max_minelem[cur_maxlen_include_i[i]] = sticks[i].weight;            
61       }
62     }                                                                           
63     printf("%d\n", cur_maxlen);                                                 
64   }                                                                             
65   return 0;                                                                     
66 }

该程序提交后运行时间为228ms
接下来是采用二分加速来查找最长递减子序列,程序如下:

 1 #include <cstdio>                                                               
 2 #include <cstring>                                                              
 3 #include <cstdlib>                                                              
 4                                                                                 
 5 #define MAX 5005                                                                
 6                                                                                 
 7 typedef struct {                                                                
 8   int weight;                                                                   
 9   int length;                                                                   
10 }STICK;                                                                         
11                                                                                 
12 STICK sticks[MAX];                                                              
13 //cur_maxlen_include_i[i]代表包含元素sticks[i].length的递减子序列的长度         
14 int cur_maxlen_include_i[MAX];                                                  
15 //cur_max_minelem[i]代表长度为i的递减子序列的最小元素的最大值                   
16 int cur_max_minelem[MAX];                                                       
17                                                                                 
18 int cmp(const void *a, const void *b) {                                         
19   STICK *x = (STICK *)a;                                                        
20   STICK *y = (STICK *)b;                                                        
21   if (x->length != y->length) {                                                 
22     return x->length - y->length;                                               
23   } else {                                                                      
24     return x->weight - y->weight;                                               
25   }                                                                             
26 }                                                                               
27                                                                                 
28 int main() {                          
29   int T;                                                                        
30   scanf("%d", &T);                                                              
31   while (T--) {                                                                 
32     int N;                                                                      
33     int i, j;                                                                   
34     scanf("%d", &N);                                                            
35     for (i = 0; i < N; ++i) {                                                   
36       scanf("%d%d", &(sticks[i].length), &(sticks[i].weight));                  
37     }                                                                           
38     qsort(sticks, N, sizeof(STICK), cmp);
39                                                                                 
40     //求最长递减子序列                                                          
41     memset(cur_maxlen_include_i, 0, sizeof(int) * MAX);                         
42     memset(cur_max_minelem, 0, sizeof(int) * MAX);                              
43                                                                                 
44     cur_maxlen_include_i[0] = 1;                                                
45     cur_max_minelem[1] = sticks[0].weight;                                      
46                                                                                 
47     int cur_maxlen = 1;                                                         
48     for (i = 1; i < N; ++i) {
49       cur_maxlen_include_i[i] = 1;                                              
50       int low = 1;                                                              
51       int high = cur_maxlen;                                                    
52       while (low < high - 1) {                                                  
53         int mid = (low + high) >> 1;                                            
54         if (cur_max_minelem[mid] > sticks[i].weight) {                          
55           low = mid;                                                            
56         } else {                                                                
57           high = mid;                                                           
58         }                                                                       
59       }                                                                         
60       if (cur_max_minelem[low] > sticks[i].weight) {                            
61         cur_maxlen_include_i[i] = low + 1;                                      
62       }                                                                         
63       if (cur_max_minelem[high] > sticks[i].weight) {                           
64         cur_maxlen_include_i[i] = high + 1;                                     
65       }                                                                         
66       if (cur_maxlen_include_i[i] > cur_maxlen) {                               
67         cur_maxlen = cur_maxlen_include_i[i];                                   
68         cur_max_minelem[cur_maxlen] = sticks[i].weight;                         
69       } else if (cur_max_minelem[cur_maxlen_include_i[i]] < sticks[i].weight) { 
70         cur_max_minelem[cur_maxlen_include_i[i]] = sticks[i].weight;            
71       }                                                                         
72     }                                                                           
73     printf("%d\n", cur_maxlen);                                                 
74   }                                                                             
75   return 0;                                                                     
76 }

二分加速提交后运行时间反而为264ms,运行时间慢了,说明题目的测试数据可能并不十分均匀。
posted on 2012-09-18 16:47 myjfm 阅读(492) 评论(0)  编辑 收藏 引用 所属分类: 算法基础

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理