Posted on 2013-05-13 17:43
鑫龙 阅读(301)
评论(0) 编辑 收藏 引用 所属分类:
JULY_程序员编程艺术
作者:上善若水、July、yansha。
出处:http://blog.csdn.net/v_JULY_v 。
前奏
本章陆续开始,除了继续保持原有的字符串、数组等面试题之外,会有意识的间断性节选一些有关数字趣味小而巧的面试题目,重在突出思路的“巧”,和“妙”。本章亲和数问题之关键字,“500万”,“线性复杂度”。
第一节、亲和数问题
题目描述:
求500万以内的所有亲和数
如果两个数a和b,a的所有真因数之和等于b,b的所有真因数之和等于a,则称a,b是一对亲和数。
例如220和284,1184和1210,2620和2924。
分析:
首先得明确到底是什么是亲和数?
亲和数问题最早是由毕达哥拉斯学派发现和研究的。他们在研究数字的规律的时候发现有以下性质特点的两个数:
220的真因子是:1、2、4、5、10、11、20、22、44、55、110;
284的真因子是:1、2、4、71、142。
而这两个数恰恰等于对方的真因子各自加起来的和(sum[i]表示数i 的各个真因子的和),即
220=1+2+4+71+142=sum[284],
284=1+2+4+5+10+11+20+22+44+55+110=sum[220]。
得284的真因子之和sum[284]=220,且220的真因子之和sum[220]=284,即有sum[220]=sum[sum[284]]=284。
如此,是否已看出丝毫端倪?
如上所示,考虑到1是每个整数的因子,把出去整数本身之外的所有因子叫做这个数的“真因子”。如果两个整数,其中每一个真因子的和都恰好等于另一个数,那么这两个数,就构成一对“亲和数”(有关亲和数的更多讨论,可参考这:http://t.cn/hesH09)。
求解:
了解了什么是亲和数,接下来咱们一步一步来解决上面提出的问题(以下内容大部引自水的原话,同时水哥有一句原话,“在你真正弄弄懂这个范例之前,你不配说你懂数据结构和算法”)。
- 看到这个问题后,第一想法是什么?模拟搜索+剪枝?回溯?时间复杂度有多大?其中bn为an的伪亲和数,即bn是an的真因数之和大约是多少?至少是10^13(@iicup:N^1.5 对于5*10^6 , 次数大致 10^10 而不是 10^13.)的数量级的。那么对于每秒千万次运算的计算机来说,大概在1000多天也就是3年内就可以搞定了(iicup的计算: 10^13 / 10^7 =1000000(秒) 大约 278 小时. )。如果是基于这个基数在优化,你无法在一天内得到结果的。
- 一个不错的算法应该在半小时之内搞定这个问题,当然这样的算法有很多。节约时间的做法是可以生成伴随数组,也就是空间换时间,但是那样,空间代价太大,因为数据规模庞大。
- 在稍后的算法中,依然使用的伴随数组,只不过,因为题目的特殊性,只是它方便和巧妙地利用了下标作为伴随数组,来节约时间。同时,将回溯的思想换成递推的思想(预处理数组的时间复杂度为logN(调和级数)*N,扫描数组的时间复杂度为线性O(N)。所以,总的时间复杂度为O(N*logN+N)(其中logN为调和级数) )。
第二节、伴随数组线性遍历
依据上文中的第3点思路,编写如下代码:
int sum[5000010]; //为防越界
int main()
{
int i, j;
for (i = 0; i <= 5000000; i++)
sum[i] = 1; //1是所有数的真因数所以全部置1
for (i = 2; i + i <= 5000000; i++)
{
//5000000以下最大的真因数是不超过它的一半的
j = i + i; //因为真因数,所以不能算本身,所以从它的2倍开始
while (j <= 5000000)
{
//将所有i的倍数的位置上加i
sum[j] += i;
j += i;
}
}
for (i = 220; i <= 5000000; i++) //扫描,O(N)。
{
// 一次遍历,因为知道最小是220和284因此从220开始
if (sum[i] > i && sum[i] <= 5000000 && sum[sum[i]] == i)
{
//去重,不越界,满足亲和
printf("%d %d/n",i,sum[i]);
}
}
return 0;
}
第三节、程序的构造与解释
我再来具体解释下上述程序的原理,ok,举个例子,假设是求10以内的亲和数,求解步骤如下:
因为所有数的真因数都包含1,所以,先在各个数的下方全部置1
- 然后取i=2,3,4,5(i<=10/2),j依次对应的位置为j=(4、6、8、10),(6、9),(8),(10)各数所对应的位置。
- 依据j所找到的位置,在j所指的各个数的下面加上各个真因子i(i=2、3、4、5)。
整个过程,即如下图所示(如sum[6]=1+2+3=6,sum[10]=1+2+5=8.):
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 2 2 2
3 3
4
5 - 然后一次遍历i从220开始到5000000,i每遍历一个数后,
将i对应的数下面的各个真因子加起来得到一个和sum[i],如果这个和sum[i]==某个i’,且sum[i‘]=i,
那么这两个数i和i’,即为一对亲和数。 - i=2;sum[4]+=2,sum[6]+=2,sum[8]+=2,sum[10]+=2,sum[12]+=2...
i=3,sum[6]+=3,sum[9]+=3...
...... - i=220时,sum[220]=284,i=284时,sum[284]=220;即sum[220]=sum[sum[284]]=284,
得出220与284是一对亲和数。所以,最终输出220、284,...