posts - 200, comments - 8, trackbacks - 0, articles - 0

索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。

数据库索引

什么是索引

数据库索引好比是一本书前面的目录,能加快数据库的查询速度。

例如这样一个查询:select * from table1 where id=44。如果没有索引,必须遍历整个表,直到ID等于44的这一行被找到为止;有了索引之后(必须是在ID这一列上建立的索引),直接在索引里面找44(也就是在ID这一列找),就可以得知这一行的位置,也就是找到了这一行。可见,索引是用来定位的。

索引分为聚簇索引和非聚簇索引两种,聚簇索引 是按照数据存放的物理位置为顺序的,而非聚簇索引就不一样了;聚簇索引能提高多行检索的速度,而非聚簇索引对于单行的检索很快。

概述

建立索引的目的是加快对表中记录的查找或排序。

为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。

B树索引-Sql Server索引方式

B树索引-Sql Server索引方式

为什么要创建索引

创建索引可以大大提高系统的性能。

第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?因为,增加索引也有许多不利的方面。

第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。

在哪建索引

索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引:

在经常需要搜索的列上,可以加快搜索的速度;
在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;
在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;
在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。

同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:

第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。

第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。

第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少,不利于使用索引。

第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改操作远远多于检索操作时,不应该创建索引。

数据库优化

此外,除了数据库索引之外,在LAMP结果如此流行的今天,数据库(尤其是MySQL)性能优化也是海量数据处理的一个热点。下面就结合自己的经验,聊一聊MySQL数据库优化的几个方面。

首先,在数据库设计的时候,要能够充分的利用索引带来的性能提升,至于如何建立索引,建立什么样的索引,在哪些字段上建立索引,上面已经讲的很清楚了,这里不在赘述。另外就是设计数据库的原则就是尽可能少的进行数据库写操作(插入,更新,删除等),查询越简单越好。如下:

数据库设计

数据库设计

其次,配置缓存是必不可少的,配置缓存可以有效的降低数据库查询读取次数,从而缓解数据库服务器压力,达到优化的目的,一定程度上来讲,这算是一个“围魏救赵”的办法。可配置的缓存包括索引缓存(key_buffer),排序缓存(sort_buffer),查询缓存(query_buffer),表描述符缓存(table_cache),如下图:

配置缓存

配置缓存

第三,切表,切表也是一种比较流行的数据库优化方法。分表包括两种方式:横向分表和纵向分表,其中,横向分表比较有使用意义,故名思议,横向切表就是指把记录分到不同的表中,而每条记录仍旧是完整的(纵向切表后每条记录是不完整的),例如原始表中有100条记录,我要切成2个表,那么最简单也是最常用的方法就是ID取摸切表法,本例中,就把ID为1,3,5,7。。。的记录存在一个表中,ID为2,4,6,8,。。。的记录存在另一张表中。虽然横向切表可以减少查询强度,但是它也破坏了原始表的完整性,如果该表的统计操作比较多,那么就不适合横向切表。横向切表有个非常典型的用法,就是用户数据:每个用户的用户数据一般都比较庞大,但是每个用户数据之间的关系不大,因此这里很适合横向切表。最后,要记住一句话就是:分表会造成查询的负担,因此在数据库设计之初,要想好是否真的适合切表的优化:

分表

分表

第四,日志分析,在数据库运行了较长一段时间以后,会积累大量的LOG日志,其实这里面的蕴涵的有用的信息量还是很大的。通过分析日志,可以找到系统性能的瓶颈,从而进一步寻找优化方案。

性能分析

性能分析

以上讲的都是单机MySQL的性能优化的一些经验,但是随着信息大爆炸,单机的数据库服务器已经不能满足我们的需求,于是,多多节点,分布式数据库网络出现了,其一般的结构如下:

分布式数据库结构

分布式数据库结构

这种分布式集群的技术关键就是“同步复制”。。。《未完待续。。。》

做人要厚道,转载请注明出处:http://diducoder.com/mass-data-topic-7-index-and-

posted @ 2012-11-05 20:28 鑫龙 阅读(263) | 评论 (0)编辑 收藏

【什么是双层桶】
事实上,与其说双层桶划分是一种数据结构,不如说它是一种算法设计思想。面对一堆大量的数据我们无法处理的时候,我们可以将其分成一个个小的单元,然后根据一定的策略来处理这些小单元,从而达到目的。

【适用范围】
第k大,中位数,不重复或重复的数字

【基本原理及要点】
因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子,分治才是其根本(只是“只分不治”)。

【扩展】
当有时候需要用一个小范围的数据来构造一个大数据,也是可以利用这种思想,相比之下不同的,只是其中的逆过程。

【问题实例】
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。 当然这个题也可以用我们前面讲过的BitMap方法解决,正所谓条条大道通罗马~~~

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几 大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

3).现在有一个0-30000的随机数生成器。请根据这个随机数生成器,设计一个抽奖范围是0-350000彩票中奖号码列表,其中要包含20000个中奖号码。

这个题刚好和上面两个思想相反,一个0到3万的随机数生成器要生成一个0到35万的随机数。那么我们完全可以将0-35万的区间分成35/3=12个区间,然后每个区间的长度都小于等于3万,这样我们就可以用题目给的随机数生成器来生成了,然后再加上该区间的基数。那么要每个区间生成多少个随机数呢?计算公式就是:区间长度*随机数密度,在本题目中就是30000*(20000/350000)。最后要注意一点,该题目是有隐含条件的:彩票,这意味着你生成的随机数里面不能有重复,这也是我为什么用双层桶划分思想的另外一个原因。

做人好厚道,转载请注明出处:http://diducoder.com/mass-data-topic-6-multi-dividing.html

posted @ 2012-11-05 20:26 鑫龙 阅读(308) | 评论 (0)编辑 收藏

【什么是堆】
概念:堆是一种特殊的二叉树,具备以下两种性质
1)每个节点的值都大于(或者都小于,称为最小堆)其子节点的值
2)树是完全平衡的,并且最后一层的树叶都在最左边
这样就定义了一个最大堆。如下图用一个数组来表示堆:

那么下面介绍二叉堆:二叉堆是一种完全二叉树,其任意子树的左右节点(如果有的话)的键值一定比根节点大,上图其实就是一个二叉堆。

你一定发觉了,最小的一个元素就是数组第一个元素,那么二叉堆这种有序队列如何入队呢?看图:

假设要在这个二叉堆里入队一个单元,键值为2,那只需在数组末尾加入这个元素,然后尽可能把这个元素往上挪,直到挪不动,经过了这种复杂度为Ο(logn)的操作,二叉堆还是二叉堆。

那如何出队呢?也不难,看图:


出队一定是出数组的第一个元素,这么来第一个元素以前的位置就成了空位,我们需要把这个空位挪至叶子节点,然后把数组最后一个元素插入这个空位,把这个“空位”尽量往上挪。这种操作的复杂度也是Ο(logn)。

【适用范围】
海量数据前n大,并且n比较小,堆可以放入内存

【基本原理及要点】
最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元 素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

【扩展】
双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

【问题实例】
1)100w个数中找最大的前100个数。
用一个100个元素大小的最小堆即可。

做人要厚道:转载请注明出处:http://diducoder.com/mass-data-topic-5-heap.html

posted @ 2012-11-05 20:24 鑫龙 阅读(214) | 评论 (0)编辑 收藏

【什么是Bit-map】

所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。

如果说了这么多还没明白什么是Bit-map,那么我们来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0(如下图:)

然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0×01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为一(如下图):

然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下:

然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。下面的代码给出了一个BitMap的用法:排序。

//定义每个Byte中有8个Bit位 #include <memory.h> #define BYTESIZE 8 void SetBit(char *p, int posi) { 	for(int i=0; i < (posi/BYTESIZE); i++) 	{ 		p++; 	}  	*p = *p|(0x01<<(posi%BYTESIZE));//将该Bit位赋值1 	return; }  void BitMapSortDemo() { 	//为了简单起见,我们不考虑负数 	int num[] = {3,5,2,10,6,12,8,14,9};  	//BufferLen这个值是根据待排序的数据中最大值确定的 	//待排序中的最大值是14,因此只需要2个Bytes(16个Bit) 	//就可以了。 	const int BufferLen = 2; 	char *pBuffer = new char[BufferLen];  	//要将所有的Bit位置为0,否则结果不可预知。 	memset(pBuffer,0,BufferLen); 	for(int i=0;i<9;i++) 	{ 		//首先将相应Bit位上置为1 		SetBit(pBuffer,num[i]); 	}  	//输出排序结果 	for(int i=0;i<BufferLen;i++)//每次处理一个字节(Byte) 	{ 		for(int j=0;j<BYTESIZE;j++)//处理该字节中的每个Bit位 		{ 			//判断该位上是否是1,进行输出,这里的判断比较笨。 			//首先得到该第j位的掩码(0x01<<j),将内存区中的 			//位和此掩码作与操作。最后判断掩码是否和处理后的 			//结果相同 			if((*pBuffer&(0x01<<j)) == (0x01<<j)) 			{ 				printf("%d ",i*BYTESIZE + j); 			} 		} 		pBuffer++; 	} }  int _tmain(int argc, _TCHAR* argv[]) { 	BitMapSortDemo(); 	return 0; }

【适用范围】

可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

【基本原理及要点】

使用bit数组来表示某些元素是否存在,比如8位电话号码

【扩展】

Bloom filter可以看做是对bit-map的扩展

【问题实例】

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==12.4MBytes,这样,就用了小小的12.4M左右的内存表示了所有的8位数的电话)

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上,在遍历这些数的时候,如果对应位置的值是0,则将其置为1;如果是1,将其置为2;如果是2,则保持不变。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。

做人好厚道,转载请注明出处:http://diducoder.com/mass-data-4-bitmap.html

posted @ 2012-11-05 20:24 鑫龙 阅读(259) | 评论 (0)编辑 收藏

【什么是Hash】

Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

HASH主要用于信息安全领域中加密算法,它把一些不同长度的信息转化成杂乱的128位的编码,这些编码值叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系。

数组的特点是:寻址容易,插入和删除困难;而链表的特点是:寻址困难,插入和删除容易。那么我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表,哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法——拉链法,我们可以理解为“链表的数组”,如图:

左边很明显是个数组,数组的每个成员包括一个指针,指向一个链表的头,当然这个链表可能为空,也可能元素很多。我们根据元素的一些特征把元素分配到不同的链表中去,也是根据这些特征,找到正确的链表,再从链表中找出这个元素。

元素特征转变为数组下标的方法就是散列法。散列法当然不止一种,下面列出三种比较常用的。

1,除法散列法
最直观的一种,上图使用的就是这种散列法,公式:
index = value % 16
学过汇编的都知道,求模数其实是通过一个除法运算得到的,所以叫“除法散列法”。

2,平方散列法
求index是非常频繁的操作,而乘法的运算要比除法来得省时(对现在的CPU来说,估计我们感觉不出来),所以我们考虑把除法换成乘法和一个位移操作。公式:
index = (value * value) >> 28
如果数值分配比较均匀的话这种方法能得到不错的结果,但我上面画的那个图的各个元素的值算出来的index都是0——非常失败。也许你还有个问题,value如果很大,value * value不会溢出吗?答案是会的,但我们这个乘法不关心溢出,因为我们根本不是为了获取相乘结果,而是为了获取index。

3,斐波那契(Fibonacci)散列法

平方散列法的缺点是显而易见的,所以我们能不能找出一个理想的乘数,而不是拿value本身当作乘数呢?答案是肯定的。

1,对于16位整数而言,这个乘数是40503
2,对于32位整数而言,这个乘数是2654435769
3,对于64位整数而言,这个乘数是11400714819323198485

这几个“理想乘数”是如何得出来的呢?这跟一个法则有关,叫黄金分割法则,而描述黄金分割法则的最经典表达式无疑就是著名的斐波那契数列,如果你还有兴趣,就到网上查找一下“斐波那契数列”等关键字,我数学水平有限,不知道怎么描述清楚为什么,另外斐波那契数列的值居然和太阳系八大行星的轨道半径的比例出奇吻合,很神奇,对么?

对我们常见的32位整数而言,公式:
i ndex = (value * 2654435769) >> 28

如果用这种斐波那契散列法的话,那我上面的图就变成这样了:


很明显,用斐波那契散列法调整之后要比原来的取摸散列法好很多。

【适用范围】

快速查找,删除的基本数据结构,通常需要总数据量可以放入内存。

【基本原理及要点】
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。

【扩展】
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同 时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个 位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。

【问题实例】
1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

做人要厚道,转载请注明出处: http://diducoder.com/mass-data-topic-3-hash.html

posted @ 2012-11-05 20:19 鑫龙 阅读(275) | 评论 (0)编辑 收藏

【什么是Bloom Filter】

Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,采用Bloom Filter的数据结构,可以通过极少的错误换取了存储空间的极大节省。 这里有一篇关于Bloom Filter的详细介绍,不太懂的博友可以看看。

【适用范围】

可以用来实现数据字典,进行数据的判重,或者集合求交集

【基本原理及要点】

对于原理来说很简单,位数组外加k个独立hash函数。Bloom filter提供两种基本的操作,将元素加入集合和判断某一元素是否属于该集合,一下说明如何操作:
将一个元素加入集合:首先将要加入集合的元素用k个hash函数进行hash,得到k个hash index,然后在集合的位数组中将这k个hash index的位置置1,下面用两幅图来描述这个过程。
bloom filter位数组(集合)的初始状态

bloom filter位数组(集合)的初始状态

插入两个个元素,X1,X2:
bloom-filter-插入元素

bloom-filter-插入元素

查找元素是否属于该集合:首先同样用定义的hash函数对该元素进行hash得到hash index,然后查位数组中对应的hash index是否都是1,如果是,则表明该元素属于该集合,反之不属于【当然不全是了,请继续看后面】,如图,判断元素Y1,Y2是否属于该集合。
bloom-filter-判断元素是否属于集合

bloom-filter-判断元素是否属于集合

如上图,由于y1的三个hash index有一个不为1,因此不属于该集合,而y2所有的hash index的位置上都为1,因此属于该集合。

【Bloom Filter的不足】

很明显上面这个查找过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况 下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

【扩展】

Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。

【问题实例】

给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。 现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
做人好厚道,转载请注明出处:http://diducoder.com/mass-data-topic-2-bloom-filter.html

posted @ 2012-11-05 20:03 鑫龙 阅读(308) | 评论 (0)编辑 收藏

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯 这样的一些涉及到海量数据的公司经常会问到。
  下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

 

  本贴从解决这类问题的方法入手,开辟一系列专题来解决海量数据问题。拟包含 以下几个方面。
  1. Bloom Filter
  2. Hash
  3. Bit-Map
  4. 堆(Heap)
  5. 双层桶划分
  6. 数据库索引
  7. 倒排索引(Inverted Index)
  8. 外排序
  9. Trie树
  10. MapReduce

在这些解决方案之上,再借助一定的例子来剖析海量数据处理问题的解决方案。

其实在园子里面好多类似的面试题都可以用这样的方法来解答,比如百度的TopK热门查询问题,某日IP最多访问问题。

把这类问题研究好了,面试像百度,腾讯这样的公司就完全没问题了!!!

posted @ 2012-11-05 20:02 鑫龙 阅读(261) | 评论 (0)编辑 收藏

     摘要: 教你如何迅速秒杀99%的海量数据处理面试题前言   一般而言,标题含有“秒杀”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步来讲,如果读者读罢此文,却无任何收获,那么,我也甘愿背负这样的罪名,:-),同时,此文可以看做是对这篇文章:十道海量数据处理面试题与十个方法大总结的一般抽象性总结。    ...  阅读全文

posted @ 2012-11-05 19:58 鑫龙 阅读(319) | 评论 (0)编辑 收藏

     摘要:       中断还是中断,我讲了很多次的中断了,今天还是要讲中断,为啥呢?因为在操作系统中,中断是必须要讲的..       那么什么叫中断呢, 中断还是打断,这样一说你就不明白了。唉,中断还真是有点像打断。我们知道linux管理所有的硬件设备,要做的第一件事先是通信。然后,我们天天在说一句话:处理器的速度跟...  阅读全文

posted @ 2012-10-26 16:49 鑫龙 阅读(308) | 评论 (0)编辑 收藏

进程上下文和中断上下文是操作系统中很重要的两个概念,这两个概念在操作系统课程中不断被提及,是最经常接触、看上去很懂但又说不清楚到底怎么回事。造成这种局面的原因,可能是原来接触到的操作系统课程的教学总停留在一种浅层次的理论层面上,没有深入去研究。
处理器总处于以下状态中的一种:
1、内核态,运行于进程上下文,内核代表进程运行于内核空间;
2、内核态,运行于中断上下文,内核代表硬件运行于内核空间;
3、用户态,运行于用户空间。
用户空间的应用程序,通过系统调用,进入内核空间。这个时候用户空间的进程要传递很多变量、参数的值给内核,内核态运行的时候也要保存用户进程的一些寄存器值、变量等。所谓的“进程上下文”,可以看作是用户进程传递给内核的这些参数以及内核要保存的那一整套的变量和寄存器值和当时的环境等。
硬件通过触发信号,导致内核调用中断处理程序,进入内核空间。这个过程中,硬件的一些变量和参数也要传递给内核,内核通过这些参数进行中断处理。所谓的“中断上下文”,其实也可以看作就是硬件传递过来的这些参数和内核需要保存的一些其他环境(主要是当前被打断执行的进程环境)。

关于进程上下文LINUX完全注释中的一段话:
   当一个进程在执行时,CPU的所有寄存器中的值、进程的状态以及堆栈中的内容被称为该进程的上下文。当内核需要切换到另一个进程时,它需要保存当前进程的所有状态,即保存当前进程的上下文,以便在再次执行该进程时,能够必得到切换时的状态执行下去。在LINUX中,当前进程上下文均保存在进程的任务数据结构中。在发生中断时,内核就在被中断进程的上下文中,在内核态下执行中断服务例程。但同时会保留所有需要用到的资源,以便中断服务结束时能恢复被中断进程的执行。

posted @ 2012-10-22 20:40 鑫龙 阅读(288) | 评论 (0)编辑 收藏

仅列出标题
共20页: First 12 13 14 15 16 17 18 19 20