Hdoj 2181 哈密顿绕行世界问题

Problem Description
一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。
 

Input
前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
 

Output
输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output
 

Sample Input
2 5 20
1 3 12
2 4 10
3 5 8
1 4 6
5 7 19
6 8 17
4 7 9
8 10 16
3 9 11
10 12 15
2 11 13
12 14 20
13 15 18
11 14 16
9 15 17
7 16 18
14 17 19
6 18 20
1 13 19
5
0
 

Sample Output
1:  5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5
2:  5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5
3:  5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5
4:  5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5
5:  5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5
6:  5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5
7:  5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5
8:  5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5
9:  5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5
10:  5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5
11:  5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5
12:  5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5
13:  5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5
14:  5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5
15:  5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5
16:  5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5
17:  5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5
18:  5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5
19:  5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5
20:  5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5
21:  5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5
22:  5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
23:  5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5
24:  5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5
25:  5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5
26:  5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5
27:  5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5
28:  5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5
29:  5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5
30:  5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5
31:  5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5
32:  5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5
33:  5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5
34:  5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5
35:  5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5
36:  5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5
37:  5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5
38:  5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5
39:  5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5
40:  5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5
41:  5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5
42:  5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5
43:  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
44:  5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5
45:  5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5
46:  5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5
47:  5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5
48:  5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5
49:  5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5
50:  5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5
51:  5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5
52:  5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5
53:  5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5
54:  5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5
55:  5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5
56:  5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5
57:  5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5
58:  5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5
59:  5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5
60:  5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5
分析:典型的搜索问题,搜索完除起点以外的19个点时,判断最后那个点是否与起点相连,相连则输出路径,否则退出。注意回溯,否则只会输出1条路径。
 1 #include <iostream>
 2 const int N = 21;
 3 bool visited[N];
 4 int map[N][N],path[N],s,num;
 5 void dfs(int v0,int cnt){
 6     int i;
 7     if(cnt==19 && map[v0][s]){
 8         printf("%d:  ",++num);
 9         for(i=0;i<20;i++)
10             printf("%d ",path[i]);
11         printf("%d\n",s);
12         return ;
13     }
14     if(cnt>19return;
15     for(i=1;i<=20;i++)   
16         if(!visited[i] && map[v0][i]){
17             path[cnt+1]=i;
18             visited[i]=1;
19             dfs(i,cnt+1);
20             visited[i]=0;     //回溯
21         }
22 }
23 int main(){
24     int i,v0,v1,v2,v3;
25     memset(map,0,sizeof(map));
26     for(i=1;i<=20;i++){
27         scanf("%d %d %d",&v1,&v2,&v3);
28         map[i][v1]=map[i][v2]=map[i][v3]=1;
29         map[v1][i]=map[v2][i]=map[v3][i]=1;
30     }
31     while(scanf("%d",&v0),v0){
32         memset(visited,0,sizeof(visited));
33         s=v0,num=0,visited[v0]=1,path[0]=v0;
34         dfs(v0,0);
35     }
36     return 0;
37 }

posted on 2009-04-20 10:43 极限定律 阅读(1237) 评论(0)  编辑 收藏 引用 所属分类: ACM/ICPC


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


<2009年4月>
2930311234
567891011
12131415161718
19202122232425
262728293012
3456789

导航

统计

常用链接

留言簿(10)

随笔分类

随笔档案

友情链接

搜索

最新评论

阅读排行榜

评论排行榜