类似于“最近点对问题”,这个问题也可以用枚举的方法求解,时间复杂度O(n^2)。假设平面上有n个点,那么这一对最远点必然存在于这n个点所构成的一个凸包上,为了降低时间复杂度,可以先将这n个点按极角排序,然后利用Graham_scan法求出这个凸包,再枚举凸包上的所有顶点(也可以用旋转卡壳)求出这个最远距离,时间复杂度O(nlogn)。再最坏的情况下,如果这n个点本身就构成了一个凸包,时间复杂度为O(n^2)。该算法的平均复杂度为O(nlogn)。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
const int MAXN = 100001;
const double eps = 1e-6;
struct point{
double x,y;
}p[MAXN],h[MAXN];
inline double distance(const point &p1,const point &p2){
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
inline double multiply(const point &sp,const point &ep,const point &op){
return ((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
int cmp(const void *a,const void *b){
point *p1 = (point *)a;
point *p2 = (point *)b;
double t = (p1->y-p[0].y)*(p2->x-p[0].x)-(p2->y-p[0].y)*(p1->x-p[0].x);
if(t>eps) return 1;
else if(fabs(t)<=eps) return 0;
else return -1;
}
void anglesort(point p[],int n){
int i,k=0;
point temp;
for(i=1;i<n;i++)
if(p[i].x<p[k].x || (p[i].x==p[k].x) && (p[i].y<p[k].y))
k=i;
temp=p[0],p[0]=p[k],p[k]=temp;
qsort(p+1,n-1,sizeof(point),cmp);
}
void Graham_scan(point p[],point ch[],int n,int &len){
int i,top=2;
anglesort(p,n);
if(n<3){
for(i=0,len=n;i<n;i++) ch[i]=p[i];
return;
}
ch[0]=p[0],ch[1]=p[1],ch[2]=p[2];
for(i=3;i<n;i++){
while(multiply(p[i],ch[top],ch[top-1])>=0) top--;
ch[++top]=p[i];
}
len=top+1;
}
int main(){
int i,j,n,len;
double d,ans;
while(scanf("%d",&n),n){
for(i=0;i<n;i++) scanf("%lf %lf",&p[i].x,&p[i].y);
Graham_scan(p,h,n,len);
for(ans=i=0;i<len;i++)
for(j=i+1;j<len;j++){
d=distance(h[i],h[j]);
if(d>ans) ans=d;
}
printf("%.2lf\n",ans);
}
return 0;
}