pamler

常用链接

统计

最新评论

二叉排序树相关

    在二叉排序树上进行查找时的平均查找长度和二叉树的形态有关:
    ①在最坏情况下,二叉排序树是通过把一个有序表的n个结点依次插入而生成的,此时所得的二叉排序树蜕化为棵深度为n的单支树,它的平均查找长度和单链表上的顺序查找相同,亦是(n+1)/2。
    ②在最好情况下,二叉排序树在生成的过程中,树的形态比较匀称,最终得到的是一棵形态与二分查找的判定树相似的二叉排序树,此时它的平均查找长度大约是lgn。
    ③插入、删除和查找算法的时间复杂度均为O(lgn)。

    二叉排序树和二分查找的比较
    就平均时间性能而言,二叉排序树上的查找和二分查找差不多。
    就维护表的有序性而言,二叉排序树无须移动结点,只需修改指针即可完成插入和删除操作,且其平均的执行时间均为O(lgn),因此更有效。二分查找所涉及的有序表是一个向量,若有插入和删除结点的操作,则维护表的有序性所花的代价是O(n)。当有序表是静态查找表时,宜用向量作为其存储结构,而采用二分查找实现其查找操作;若有序表里动态查找表,则应选择二叉排序树作为其存储结构。

     输入序列决定了二叉查找树的形态。二叉查找树的中序序列是一个有序序列。所以对于一个任意的关键字序列构造一棵二叉查找树,其实质是对此关键字序列进行排序,使其变为有序序列。因此,人们又常常将二叉查找树称为二叉排序树。通常将这种排序称为树排序(Tree Sort),可以证明这种排序的平均执行时间亦为O(nlgn)。对相同的输入实例,树排序的执行时间约为堆排序的2至3倍。因此在一般情况下,构造二叉排序树的目的并非为了排序,而是用它来加速查找,这是因为在一个有序的集合上查找通常比在无序集合上查找更快,“查找树"的名称也由此而来。

posted on 2010-12-25 18:48 pamler 阅读(291) 评论(0)  编辑 收藏 引用