Poj 3370
Halloween treats
这道题在集训手册上标志是“抽屉原理”,老实说,在看到这道题的具体解法之前,我还不知道为什么是抽屉原理,这明明是判断一些数的同余嘛,后来才发现鸽笼原理的巧妙之处。
4 5
1 2 3 7 5
例如对于第一组数据,
1 2 3 7 5模上4分别是:
1 2 3 3 1
如果采用同余+dp的方法,难度会相当大,规则比较复杂;
这时,我们采用一种巧妙地方法,就是用一个sum[i]数组来记录前i个数之和%4,例如上例中,我们得到:
I
|
0(该列隐含)
|
1
|
2
|
3
|
4
|
5
|
Sweet[i]
|
0
|
1
|
2
|
3
|
7
|
5
|
Sum[i]
|
0
|
1
|
3
|
2
|
1
|
2
|
由此,我们在碰到1.sum[i] == 0 或者2.sum[i]的值已经在前面出现过的情况时,就可以知道有解,并且解是从上一个出现该sum[i]数值的后一个位置开始→现在sum[i]的位置,这个貌似可以解出可能的解;但由于加和的顺序随机,所以还不清楚是否可以在该case有解的情况下一定能够解出解。这时候,我们就要用到鸽笼原理了。
运用《离散数学与组合数学》书中的方法,我们可以把sum[1~n=nneighbor](或0~n)看做n+1只鸽子(注意上面的隐含0列),飞入c=nchild个鸽笼中,再注意到题目中有这样的数据范围:
The first line of each test case
contains two integers c and n (1 ≤ c ≤ n
≤ 100000) (这是本题能用鸽笼原理的最重要的前提)
由此我们可以知道一定有两只鸽子是飞入同一个笼子当中的,所以加法的顺序就自然不用考虑了;而且由这个我们也可以知道,此题一定不存在无解的情况。
代码就不贴了,数学题还是要自己想才好