随笔 - 87  文章 - 279  trackbacks - 0
<2011年4月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

潜心看书研究!

常用链接

留言簿(19)

随笔分类(81)

文章分类(89)

相册

ACM OJ

My friends

搜索

  •  

积分与排名

  • 积分 - 214753
  • 排名 - 116

最新评论

阅读排行榜

评论排行榜

Two Ends
Time Limit:1000MS  Memory Limit:65536K
Total Submit:625 Accepted:271

Description
In the two-player game "Two Ends", an even number of cards is laid out in a row. On each card, face up, is written a positive integer. Players take turns removing a card from either end of the row and placing the card in their pile. The player whose cards add up to the highest number wins the game. Now one strategy is to simply pick the card at the end that is the largest -- we'll call this the greedy strategy. However, this is not always optimal, as the following example shows: (The first player would win if she would first pick the 3 instead of the 4.)
3 2 10 4
You are to determine exactly how bad the greedy strategy is for different games when the second player uses it but the first player is free to use any strategy she wishes.

Input
There will be multiple test cases. Each test case will be contained on one line. Each line will start with an even integer n followed by n positive integers. A value of n = 0 indicates end of input. You may assume that n is no more than 1000. Furthermore, you may assume that the sum of the numbers in the list does not exceed 1,000,000.

Output
For each test case you should print one line of output of the form:
In game m, the greedy strategy might lose by as many as p points.
where m is the number of the game (starting at game 1) and p is the maximum possible difference between the first player's score and second player's score when the second player uses the greedy strategy. When employing the greedy strategy, always take the larger end. If there is a tie, remove the left end.

Sample Input

4 3 2 10 4
8 1 2 3 4 5 6 7 8
8 2 2 1 5 3 8 7 3
0

Sample Output

In game 1, the greedy strategy might lose by as many as 7 points.
In game 2, the greedy strategy might lose by as many as 4 points.
In game 3, the greedy strategy might lose by as many as 5 points.

Source
East Central North America 2005

#include  < iostream >
#include 
< cmath >
using   namespace  std;

const   int  MAXN  =   1001 ;
int  dp[MAXN][MAXN];

int  main()
{
    
int  i, j, l, n;
    
int  t  =   1 ;
    
int  tmp;
    
int  a[MAXN];
    
while  (scanf( " %d " & n), n > 0 )
    
{
        memset(dp, 
0 sizeof (dp));
        
for  (i = 1 ; i <= n; i ++ )
            scanf(
" %d " & a[i]);
            
        
for  (i = 1 ; i < n; i ++ )
            dp[i][i
+ 1 =  abs(a[i]  -  a[i + 1 ]);
        
for  (l = 4 ; l <= n; l += 2 )
        
{
            
for  (i = 1 ; i <= n - l + 1 ; i ++ )
            
{
                j 
=  i  +  l  -   1 ;
                
if  (a[j]  <=  a[i + 1 ])
                
{
                    tmp 
=  dp[i + 2 ][j]  +  a[i]  -  a[i + 1 ];
                    
if  (dp[i][j]  <  tmp)
                        dp[i][j] 
=  tmp;
                }

                
if  (a[i]  <  a[j - 1 ])
                
{
                    tmp 
=  dp[i][j - 2 +  a[j]  -  a[j - 1 ];
                    
if  (dp[i][j]  <  tmp)
                        dp[i][j] 
=  tmp;
                }

                
if  (a[i]  >=  a[j - 1 ])
                
{
                    tmp 
=  dp[i + 1 ][j - 1 +  a[j]  -  a[i];
                    
if  (dp[i][j]  <  tmp)
                        dp[i][j] 
=  tmp;
                }

                
if  (a[j]  >  a[i + 1 ])
                
{
                    tmp 
=  dp[i + 1 ][j - 1 +  a[i]  -  a[j];
                    
if  (dp[i][j]  <  tmp)
                        dp[i][j] 
=  tmp;
                }

            }

        }

        printf(
" In game %d, the greedy strategy might lose by as many as %d points.\n " , t ++ , dp[ 1 ][n]);
    }

    system(
" pause " );
    
return   0 ;
}

posted on 2006-08-28 16:00 阅读(560) 评论(0)  编辑 收藏 引用 所属分类: ACM题目

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理