Cake Cutting
Time Limit:1000MS Memory Limit:65536K
Total Submit:528 Accepted:228
Description
You are given a rectangular cake of integral dimensions w × h. Your goal is to divide this cake into m rectangular pieces of integral dimensions such that the area of the largest piece is minimal. Each cut must be a straight line parallel to one of the sides of the original cake and must divide a piece of cake into two new pieces of positive area. Note that since a cut divides only a single piece, exactly m − 1 cuts are needed.
If w = 4, h = 4, and m = 4, then the following cuts minimize the area of the largest piece:
However, if w = 4, h = 4, and m = 3, then the following cuts are optimal:
Input
The input test file will contain multiple test cases, each of which consists of three integers w, h, m separated by a single space, with 1 ≤ w, h, m ≤ 20 and m ≤ wh. The end-of-file is marked by a test case with w = h = m = 0 and should not be processed.
Output
For each test case, write a single line with a positive integer indicating the area of the largest piece.
Sample Input
4 4 4
4 4 3
0 0 0
Sample Output
4
6
Source
Stanford Local 2004
用了记忆化搜索, 900多ms才过掉, rp好啊..
#include
<
iostream
>
using
namespace
std;
int
f[
21
][
21
][
21
];
int
lookup(
int
w,
int
h,
int
k)
{
if
(f[w][h][k]
>
0
)
return
f[w][h][k];
if
(k
==
1
)
{
f[w][h][k]
=
w
*
h;
return
f[w][h][k];
}
int
i, j;
int
max1
=
2000000000
, max2
=
2000000000
;
int
t;
//
t = 0;
for
(i
=
1
; i
<
w; i
++
)
{
for
(j
=
1
; j
<
k; j
++
)
{
if
(i
*
h
>=
j
&&
(w
-
i)
*
h
>=
k
-
j)
{
t
=
lookup(i, h, j)
>
lookup(w
-
i, h, k
-
j)
?
lookup(i, h, j) : lookup(w
-
i, h, k
-
j);
if
(max1
>
t)
max1
=
t;
}
}
}
//
t = 0;
for
(i
=
1
; i
<
h; i
++
)
{
for
(j
=
1
; j
<
k; j
++
)
{
if
(w
*
i
>=
j
&&
w
*
(h
-
i)
>=
k
-
j)
{
t
=
lookup(w, i, j)
>
lookup(w, h
-
i, k
-
j)
?
lookup(w, i, j) : lookup(w, h
-
i, k
-
j);
if
(max2
>
t)
max2
=
t;
}
}
}
f[w][h][k]
=
max1
<
max2
?
max1 : max2;
return
f[w][h][k];
}
int
g(
int
w,
int
h,
int
k)
{
memset(f,
0
,
sizeof
(f));
return
lookup(w, h, k);
}
int
main()
{
int
w, h, m;
while
(scanf(
"
%d%d%d
"
,
&
w,
&
h,
&
m)
!=
EOF)
{
if
(w
==
0
&&
h
==
0
&&
m
==
0
)
break
;
printf(
"
%d\n
"
, g(w, h, m));
}
return
0
;
}
posted on 2006-09-07 23:43
豪 阅读(562)
评论(0) 编辑 收藏 引用 所属分类:
ACM题目