随笔 - 87  文章 - 279  trackbacks - 0
<2006年1月>
25262728293031
1234567
891011121314
15161718192021
22232425262728
2930311234

潜心看书研究!

常用链接

留言簿(19)

随笔分类(81)

文章分类(89)

相册

ACM OJ

My friends

搜索

  •  

积分与排名

  • 积分 - 215489
  • 排名 - 116

最新评论

阅读排行榜

评论排行榜

Cake Cutting
Time Limit:1000MS  Memory Limit:65536K
Total Submit:528 Accepted:228

Description

You are given a rectangular cake of integral dimensions w × h. Your goal is to divide this cake into m rectangular pieces of integral dimensions such that the area of the largest piece is minimal. Each cut must be a straight line parallel to one of the sides of the original cake and must divide a piece of cake into two new pieces of positive area. Note that since a cut divides only a single piece, exactly m − 1 cuts are needed.

If w = 4, h = 4, and m = 4, then the following cuts minimize the area of the largest piece:

However, if w = 4, h = 4, and m = 3, then the following cuts are optimal:

Input

The input test file will contain multiple test cases, each of which consists of three integers w, h, m separated by a single space, with 1 ≤ w, h, m ≤ 20 and mwh. The end-of-file is marked by a test case with w = h = m = 0 and should not be processed.

Output

For each test case, write a single line with a positive integer indicating the area of the largest piece.

Sample Input

4 4 4
4 4 3
0 0 0

Sample Output

4
6

Source
Stanford Local 2004

用了记忆化搜索, 900多ms才过掉, rp好啊..

#include  < iostream >
using   namespace  std;

int  f[ 21 ][ 21 ][ 21 ];

int  lookup( int  w,  int  h,  int  k)
{
    
if  (f[w][h][k]  >   0 return  f[w][h][k];
    
if  (k  ==   1 )
    
{
        f[w][h][k] 
=  w  *  h;
        
return  f[w][h][k];
    }

    
int  i, j;
    
int  max1  =   2000000000 , max2  =   2000000000 ;
    
int  t;

    
// t = 0;
     for  (i = 1 ; i < w; i ++ )
    
{
        
for  (j = 1 ; j < k; j ++ )
        
{
            
if  (i * >=  j  &&  (w - i) * >=  k - j)
            
{
                t 
=  lookup(i, h, j)  >  lookup(w - i, h, k - j)  ?  lookup(i, h, j) : lookup(w - i, h, k - j);
                
if  (max1  >  t)
                    max1 
=  t;
            }

        }

    }


    
// t = 0;
     for  (i = 1 ; i < h; i ++ )
    
{
        
for  (j = 1 ; j < k; j ++ )
        
{
            
if  (w * >=  j  &&  w * (h - i)  >=  k - j)
            
{
                t 
=  lookup(w, i, j)  >  lookup(w, h - i, k - j)  ?  lookup(w, i, j) : lookup(w, h - i, k - j);
                
if  (max2  >  t)
                    max2 
=  t;
            }

        }

    }


    f[w][h][k] 
=  max1  <  max2  ?  max1 : max2;
    
return  f[w][h][k];
}


int  g( int  w,  int  h,  int  k)
{
    memset(f, 
0 sizeof (f));
    
return  lookup(w, h, k);
}


int  main()
{
    
int  w, h, m;

    
while  (scanf( " %d%d%d " & w,  & h,  & m)  !=  EOF)
    
{
        
if  (w  ==   0   &&  h  ==   0   &&  m  ==   0 break ;
        printf(
" %d\n " , g(w, h, m));
    }

    
return   0 ;
}
posted on 2006-09-07 23:43 阅读(566) 评论(0)  编辑 收藏 引用 所属分类: ACM题目

只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   博问   Chat2DB   管理