Girls and Boys
Time limit: 10 Seconds Memory limit: 32768K
Total Submit: 628 Accepted Submit: 188
the second year of the university somebody started a study on the romantic relations between the students. The relation “romantically involved” is defined between one girl and one boy. For the study reasons it is necessary to find out the maximum set satisfying the condition: there are no two students in the set who have been “romantically involved”. The result of the program is the number of students in such a set.
The input contains several data sets in text format. Each data set represents one set of subjects of the study, with the following description:
the number of students
the description of each student, in the following format
student_identifier:(number_of_romantic_relations) student_identifier1 student_identifier2 student_identifier3 ...
or
student_identifier:(0)
The student_identifier is an integer number between 0 and n-1, for n subjects.
For each given data set, the program should write to standard output a line containing the result.
An example is given in Figure 1.
Input
7
0: (3) 4 5 6
1: (2) 4 6
2: (0)
3: (0)
4: (2) 0 1
5: (1) 0
6: (2) 0 1
3
0: (2) 1 2
1: (1) 0
2: (1) 0
Output
5
2
#include
<
iostream
>
using
namespace
std;
const
int
MAXN
=
1001
;
int
uN, vN;
//
u,v数目
bool
g[MAXN][MAXN];
//
g[i][j] 表示 xi与yj相连
bool
p[MAXN][MAXN];
int
xM[MAXN], yM[MAXN];
//
输出量
bool
chk[MAXN];
//
辅助量 检查某轮 y[v]是否被check
int
sign[MAXN];
int
N;
bool
SearchPath(
int
u)
{
int
v;
for
(v
=
0
; v
<
vN; v
++
)
{
if
(g[u][v]
&&
!
chk[v])
{
chk[v]
=
true
;
if
(yM[v]
==
-
1
||
SearchPath(yM[v]))
{
yM[v]
=
u;
xM[u]
=
v;
return
true
;
}
}
}
return
false
;
}
int
MaxMatch()
{
int
u;
int
ret
=
0
;
memset(xM,
-
1
,
sizeof
(xM));
memset(yM,
-
1
,
sizeof
(yM));
for
(u
=
0
; u
<
uN; u
++
)
{
if
(xM[u]
==
-
1
)
{
memset(chk,
false
,
sizeof
(chk));
if
(SearchPath(u)) ret
++
;
}
}
return
ret;
}
void
SetSign(
int
v,
int
s)
{
int
i;
sign[v]
=
s;
for
(i
=
0
; i
<
N; i
++
)
if
(sign[i]
==
-
1
&&
p[v][i])
SetSign(i,
1
-
s);
}
void
Solve()
{
int
i, j;
int
tU, tV;
int
num;
memset(g,
false
,
sizeof
(g));
memset(p,
false
,
sizeof
(p));
memset(sign,
-
1
,
sizeof
(sign));
for
(i
=
0
; i
<
N; i
++
)
{
scanf(
"
\n%d: (%d)
"
,
&
tU,
&
num);
for
(j
=
0
; j
<
num; j
++
)
{
scanf(
"
%d
"
,
&
tV);
p[tU][tV]
=
true
;
}
}
//
-------------DFS标号法(划分二分图)--------------------
/**/
/*
******************************************
邻接表的DFS标号:
void setmark(int v,int sign)
{
sig[v]=sign;
int i;
for (i=0;i<nu[v];i++)
if (!sig[d[v][i]])
setmark(d[v][i],sign^3);
}
for (v=0;v<n;v++)
if (!sig[v]) setmark(v,1);
*******************************************
*/
for
(i
=
0
; i
<
N; i
++
)
if
(sign[i]
==
-
1
) SetSign(i,
1
);
//
------------------------------------------
for
(i
=
0
; i
<
N; i
++
)
{
if
(sign[i]
==
1
)
{
for
(j
=
0
; j
<
N; j
++
)
if
(p[i][j]) g[i][j]
=
true
;
}
}
uN
=
vN
=
N;
printf(
"
%d\n
"
, N
-
MaxMatch());
}
int
main()
{
while
(scanf(
"
%d
"
,
&
N)
!=
EOF)
{
Solve();
}
return
0
;
}
posted on 2006-10-01 22:53
豪 阅读(573)
评论(0) 编辑 收藏 引用 所属分类:
ACM题目