随笔 - 87  文章 - 279  trackbacks - 0
<2024年11月>
272829303112
3456789
10111213141516
17181920212223
24252627282930
1234567

潜心看书研究!

常用链接

留言簿(19)

随笔分类(81)

文章分类(89)

相册

ACM OJ

My friends

搜索

  •  

积分与排名

  • 积分 - 214422
  • 排名 - 116

最新评论

阅读排行榜

评论排行榜

欧拉函数一般形式:
当 n 为素数时: phi(n) = n-1
当 n 为合数时: phi(n) = n∏(1-1/p) 其中(p为n的素数因子)

题目pku1091,要求我们求 x1..xn,m这样的序列的个数,其中xi(1<=i<=n), 使 gcd(x1, ..,xn,m)=1;
我们按欧拉函数的形式猜想如下方程:
当 n 为素数时: phi(m,n) = m^n-1
当 n 为合数时: phi(m,n) = m^n∏(1-1/p^n) 其中(p为n的素数因子)

不给出严格数学证明(不会-_-),上两式具体含义:
当 n为素数 phi(m,n) = m^n-1 显然成立
当 n 为合数时 可以假象有一个m进制n位的数,然后其中一位有m的约数p的概率为1/p, 则n位同时有p的约数的概率就为(1-1/p^n), 运用乘法原理,可以得式 phi(m,n) = m^n∏(1-1/p^n)
 
code:

#include <iostream>
using namespace std;

typedef __int64 llong;
const llong MAXN = 110000;
llong tf[MAXN], su[MAXN], ns, num[MAXN], nn;

void  init() {
    llong i, j;
    
for (i=2; i<MAXN; i++) {
        
if (!tf[i]) {
            su[ns
++]=i;
            
for (j=i*i; j<MAXN; j+=i) tf[j]=1;
        }
    }
}

llong ppow(llong a, llong b) {
    llong ret
=a;
    llong i;
    
for (i=1; i<b; i++) ret *= a;
    return ret;
}

int main() {
    llong n, m, i, p;
    llong ans
=0;
    init();
    
while (scanf("%I64d%I64d"&n, &m)!=EOF) {
        p
=m; nn=0; ans=0;
        
for (i=0; i<ns; i++) {
            
if (p%su[i]==0) {
                
while (p%su[i]==0) p/=su[i];
                num[nn
++]=su[i];
            }
            
if (p==1) break;
        }
        
if (!nn) {
            ans 
= ppow(m,n)-1;
        } 
else {
            ans 
= ppow(m,n);
            
for (i=0; i<nn; i++) {
                ans 
= ans/ppow(num[i],n)*(ppow(num[i],n)-1);
            }
        }
        printf(
"%I64d\n", ans);
    }
    return 
0;
}
posted @ 2007-09-02 22:57 豪 阅读(2480) | 评论 (4)编辑 收藏

(1)定理:设x0,x1,x2,...是无穷实数列,xj>0,j>=1,那么,
      (i)对任意的整数 n>= 1, r>=1有
            <X0,...,Xn-1,Xn,...,Xn+r> = <X0,...,Xn-1,<Xn,...,Xn+r>> 
            =   <X0,...,Xn-1,Xn+1/<Xn+1,...,Xn+r>>.
      特别地有
            <X0,...,Xn-1,Xn,Xn+1> = <X0,...,Xn-1,Xn+1/Xn+1>
      注:用该定理可以求连分数的值

(2)对于连分数数数列 <X0,...Xn> 有递推关系:
      Pn = XnPn-1+Pn-2;
      Qn = XnQn-1+Qn-2;
      定义:  P-2 = 0; P-1 = 1; Q-2 = 1; Q-1 = 0;
      所以:  P0 = X0; Q0 = 1; P1 = X1X0+1; Q1 = X1;
      特别地:当 Xi=1 时, {Pn}, {Qn}为Fbi数列


(3)pell方程: x^2+ny^2=+-1的解法:
      若n是平方数,则无解, 否则:
      先求出sqrt(n)的连分数序列<x0,x1..xn> 其中xn = 2*x0;
      对于 x^2+ny^2=-1
      若n为奇数,则 x=Pn-1, y=Qn-1; n为偶数时无解
      对于 x^2+ny^2=1
      若n为偶数,则 x=Pn-1, y=Qn-1; n为奇数时x=P2n-1, y=Q2n-1
      注:以上说的解均为最小正解
      
      
      
      

posted @ 2007-08-28 14:59 豪 阅读(1298) | 评论 (2)编辑 收藏

问题简单来说就是 a = ai (mod ni)   求未知数a,
 以下小结略去证明, 只是对定理作了必要的解释, 要了解相关定理,可查阅数论资料.

中国余数定理:
      设 n=n1*n2...nk, 其中因子两两互质.有:  a-----(a1,a2,...,ak), 其中ai = a mod ni, 则 a和(a1,a2,...,ak)关系是一一对应的.就是说可以由 a求出(a1,a2,...,ak), 也可以由(a1,a2,...,ak)求出a

推论1:
      对于 a=ai  (mod ni) 的同余方程,有唯一解

下面说说由(a1, a2, ..., ak)求a的方法:
定义 mi = n1*n2*...nk / ni;   ci = mi(mf  mod ni);   其中 mi*mf  mod ni = 1;
         则 a = (a1*c1+a2*c2+...+ak*ck)      (mod n)      (注:由此等式可求a%n, 当n很大时)

中国剩余定理关键是mf的求法,如果理解了扩展欧几里得 ax+by=d, 就可以想到:
                     mi*mf  mod ni = 1 => mi*mf+ni*y=1;

代码如下:

 

#include <iostream>
#include 
<cmath>
using namespace std;

const int MAXN = 100;
int nn, a[MAXN], n[MAXN];

int egcd(int a, int b, int &x, int &y) {
    
int d;
    
if (b == 0) {
        x 
= 1; y = 0;
        return a;
    } 
else {
        d 
= egcd(b, a%b, y, x);
        y 
-= a/b*x;
        return d;
    }
}

int lmes() {
    
int i, tm=1, mf, y, ret=0, m;
    
for (i=0; i<nn; i++) tm *= n[i];
    
for (i=0; i<nn; i++) {
        m 
= tm/n[i];
        egcd(m, n[i], mf, y);
        ret 
+= (a[i]*m*(mf%n[i]))%tm;
    }
    return (ret
+tm)%tm;
}

int main() {
    a[
0= 4; a[1= 5;
    n[
0= 5; n[1= 11;
    nn 
= 2;
    printf(
"%d\n", lmes());
    return 
0;
}


 

posted @ 2007-08-27 16:46 豪 阅读(11596) | 评论 (2)编辑 收藏

对于扩展欧几里得主要部分说明:
1. d' = bx'+(a mod b)y', d' = gcd(b, a mod b);
    设 d = gcd(a, b), 因为 d = d', 所以
    d = d' = bx'+(a mod b)y' = bx' + (a-floor(a/b)*b)y' = ay'+b(x'-floor(a/b)y');
    故有迭代:
    x = y'; y = x'-floor(a/b)y';

对于解方程主要部分说明:
1.首先给出两个定理(证明请查看相关数论书):
   A. 方程 ax = b (mod n) 有解, 当且仅当 gcd(a, n) | b;
   B. 方程 ax = b (mod n) 有d个不同的解, 其中 d = gcd(a, n);
2.证明方程有一解是: x0 = x'(b/d) mod n;
   由 a*x0 = a*x'(b/d) (mod n)
         a*x0 = d (b/d) (mod n)   (由于 ax' = d (mod n))
                 = b (mod n)
   证明方程有d个解: xi = x0 + i*(n/d)  (mod n);
   由 a*xi (mod n) = a * (x0 + i*(n/d)) (mod n)
                             = (a*x0+a*i*(n/d)) (mod n)
                             = a * x0 (mod n)             (由于 d | a)
                             = b

代码如下:

#include <iostream>
#include 
<cmath>
using namespace std;

int egcd(int a, int b, int &x, int &y) {
    
if (b == 0) {
        x 
= 1; y = 0;
        return a;
    } 
else {
        
int tx, ty, d;
        d 
= egcd(b, a%b, tx, ty);
        x 
= ty; y = tx-a/b*ty;
        return d;
    }
}

void mels(
int a, int b, int n) {
    
int tx, ty, d, x0, i;
    d 
= egcd(a, n, tx, ty);
    
if (b%d==0) {
        x0 
= ((tx*b/d)%n+n)%n;
        
for (i=0; i<d; i++) {
            printf(
"%d ", (x0+i*n/d)%n);
        }
    } 
else {
        printf(
"No solutions!");
    }
    printf(
"\n");
}

int main() {
    mels(
1430100);
    return 
0;
}
posted @ 2007-08-27 11:14 豪 阅读(2169) | 评论 (2)编辑 收藏
    好久没写了,主要是不知道写什么,发个刚写好的比较通用的堆吧,sigh~

    http://www.cppblog.com/qywyh/articles/28653.html
posted @ 2007-07-23 21:04 豪 阅读(371) | 评论 (0)编辑 收藏
仅列出标题
共18页: 1 2 3 4 5 6 7 8 9 Last