polya定理是组合数学中比较难的一部分。首先需要对置换群、集合论有一定的了解,这样有助于理解burnside引理的证明。其次,polya定理只是对于在环上存在旋转、反射等等价的变换的一种计数方法,实际的题目中很多需要其他的知识来进行辅助。
环上的计数主要就是处理置换 -> 着色这种情况。很关键的一点是同一循环内着色相同。因此很多题目就在置换和着色上下文章。
最最简单的polya定理题目是置换数目很少,每种颜色不限,这种情况下只需手工数出所有的置换就可以了,一般就是一个公式。
难一点的要么是颜色数有限,需要用排列组合的知识或动态规划来帮助计数;要么是置换非常多,需要利用数论的知识来优化。当然还有其他的题型,比如对于相邻着色的限制,这样的题目就很困难了。
polya题目:
HOJ 2084 The Colored Cubes
HOJ 2647 Megaminx
POJ 1286 Necklace of Beads
POJ 2409 Let it Bead
TOJ 2795 The Queen's New Necklaces
HDU 1812 Count the Tetris
UVa 11255 Necklace
POJ 2154 Color
POJ 2888 Magic Bracelet
UVa 10601 Cubes
NUAA 1110
posted on 2009-05-12 11:20
sdfond 阅读(3485)
评论(0) 编辑 收藏 引用 所属分类:
Algorithm - Combinatorics