Convert IP addresses to human-readable form and back.
Prototypes
#include <arpa/inet.h>
const char *inet_ntop(int af, const void *src,
char *dst, socklen_t size);
int inet_pton(int af, const char *src, void *dst);
Description
These functions are for dealing with human-readable IP addresses and converting them to their binary representation for use with various functions and system calls. The "n" stands for "network", and "p" for "presentation". Or "text presentation". But you can think of it as "printable". "ntop" is "network to printable". See?
Sometimes you don't want to look at a pile of binary numbers when looking at an IP address. You want it in a nice printable form, like 192.0.2.180, or 2001:db8:8714:3a90::12. In that case, inet_ntop() is for you.
inet_ntop()
takes the address family in the af parameter (either AF_INET or AF_INET6). The src parameter should be a pointer to either a struct in_addr or struct in6_addr containing the address you wish to convert to a string. Finally dst and size are the pointer to the destination string and the maximum length of that string.
What should the maximum length of the dst string be? What is the maximum length for IPv4 and IPv6 addresses? Fortunately there are a couple of macros to help you out. The maximum lengths are: INET_ADDRSTRLEN and INET6_ADDRSTRLEN.
Other times, you might have a string containing an IP address in readable form, and you want to pack it into a struct sockaddr_in or a struct sockaddr_in6. In that case, the opposite funcion inet_pton() is what you're after.
inet_pton()
also takes an address family (either AF_INET or AF_INET6) in the af parameter. The src parameter is a pointer to a string containing the IP address in printable form. Lastly the dst parameter points to where the result should be stored, which is probably a struct in_addr or struct in6_addr.
These functions don't do DNS lookups—you'll need getaddinfo() for that.
Return Value
inet_ntop()
returns the dst parameter on success, or NULL on failure (and errno is set).
inet_pton()
returns 1 on success. It returns -1 if there was an error (errno is set), or 0 if the input isn't a valid IP address.
Example
// IPv4 demo of inet_ntop() and inet_pton()
struct sockaddr_in sa;
char str[INET_ADDRSTRLEN];
// store this IP address in sa:
inet_pton(AF_INET, "192.0.2.33", &(sa.sin_addr));
// now get it back and print it
inet_ntop(AF_INET, &(sa.sin_addr), str, INET_ADDRSTRLEN);
printf("%s\n", str); // prints "192.0.2.33"
// IPv6 demo of inet_ntop() and inet_pton()
// (basically the same except with a bunch of 6s thrown around)
struct sockaddr_in6 sa;
char str[INET6_ADDRSTRLEN];
// store this IP address in sa:
inet_pton(AF_INET6, "2001:db8:8714:3a90::12", &(sa.sin6_addr));
// now get it back and print it
inet_ntop(AF_INET6, &(sa.sin6_addr), str, INET6_ADDRSTRLEN);
printf("%s\n", str); // prints "2001:db8:8714:3a90::12"
// Helper function you can use:
//Convert a struct sockaddr address to a string, IPv4 and IPv6:
char *get_ip_str(const struct sockaddr *sa, char *s, size_t maxlen)
{
switch(sa->sa_family) {
case AF_INET:
inet_ntop(AF_INET, &(((struct sockaddr_in *)sa)->sin_addr),
s, maxlen);
break;
case AF_INET6:
inet_ntop(AF_INET6, &(((struct sockaddr_in6 *)sa)->sin6_addr),
s, maxlen);
break;
default:
strncpy(s, "Unknown AF", maxlen);
return NULL;
}
return s;
}