O(1) 的小乐

Job Hunting

公告

记录我的生活和工作。。。
<2010年8月>
25262728293031
1234567
891011121314
15161718192021
22232425262728
2930311234

统计

  • 随笔 - 182
  • 文章 - 1
  • 评论 - 41
  • 引用 - 0

留言簿(10)

随笔分类(70)

随笔档案(182)

文章档案(1)

如影随形

搜索

  •  

最新随笔

最新评论

阅读排行榜

评论排行榜

Dimensionality Reduction Method

    Dimensionality reduction method can be diveded into two kinds:linear dimensionality reduction and nonlinear dimensionality reduction(NDR) methods. Linear dimensionality reduction methods include :PCA(principal component analysis), ICA(independent component analysis ) ,LDA( linear discriminate analysis) ,LFA(local feature analysis) and so on.

    Nonlinear dimensionality reduction methods also can be categorized into two kinds: kernel-based methods and eigenvalue-based methods. Kernel-based methods include : KPCA(kernel principal componet analysis) ,KICA(kernel independent component analysis), KDA(kernel discriminate analysis),and so on. Eigenvalue-based methods include : Isomap( Isometric Feature Mapping) [1], LLE(locally linear embedding) [2] ,Laplacian Eigenmaps[3] ,and so on.

    Isomap is an excellent NDR method. Isomap uses approximate geodesic distance instead of Euclidean distance ,and represents a set of images as a set of points in a low-dimensional space which is corresponding to natural parameterizations of the image set. Because there are similarityes within adjacent frames of sequence ,Isomap is very suitabel to analyze moving pictures and videos.

    Reference

   [1] J.B.Tenebaum, A global geometric framework for nonlinear dimensionality reduction .

   [2] Sma T. Roweis, Nonlinear dimensionality reduction by locally linear embedding .

   [3] M.Belkin and P.Niyogi  Laplacian eigenmaps and spectral techniques for embedding and clustering.

posted on 2010-08-23 16:07 Sosi 阅读(331) 评论(0)  编辑 收藏 引用 所属分类: Taps in Research


只有注册用户登录后才能发表评论。
网站导航: 博客园   IT新闻   BlogJava   知识库   博问   管理


统计系统