=======================================
============================== =========
=======================================
=======================================
=============================================================================================
=============
Thought is already is late, exactly is the earliest time.
这周老师又出差,那个文件的东西没有搞,不过也应该很好弄。。这个周前几天,老师一直跟我讨论脚步检测的可行性问题,今天上午做了PPT,等晚上和师兄师姐们讨论一下。看一下这个工作的可行性究竟有多大!
然后,这个周的晚上都有点小堕落。以后要抓紧时间学习啦!
然后是课程方面的东西,还有两个周就要相继考试了,总共有3们课程!恩。。要抓紧时间啦!矩阵论+机器学习+图像分析与计算机视觉!这些东西还是蛮多的!
然后这个周,就是把机器学习,算法,计算机视觉的那个给搞定!。。。
看了很多东西,昨天晚上看了一个台湾交通大学的一个视频,恩,挺不错的!学到了很多东西。。我还需要继续学习!
然后是实验室的各种事情,静下来好好做点东西。。。
x2fx -Convert predictor matrix to design matrix
Syntax
D = x2fx(X,model)
D = x2fx(X,model,categ)
D = x2fx(X,model,categ,catlevels)
Description
D = x2fx(X,model) converts a matrix of predictors X to a design matrix D for regression analysis. Distinct predictor variables should appear in different columns of X.
The optional input model controls the regression model. By default, x2fx returns the design matrix for a linear additive model with a constant term. model is one of the following strings:
-
'linear' — Constant and linear terms. This is the default.
-
'interaction' — Constant, linear, and interaction terms
-
'quadratic' — Constant, linear, interaction, and squared terms
-
'purequadratic' — Constant, linear, and squared terms
If X has n columns, the order of the columns of D for a full quadratic model is:
-
The constant term
-
The linear terms (the columns of X, in order 1, 2, ..., n)
-
The interaction terms (pairwise products of the columns of X, in order (1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n))
-
The squared terms (in order 1, 2, ..., n)
Other models use a subset of these terms, in the same order.
这个还是还是挺方便的。。