|
题目大意: 给一堆点,求直线距离最远的两个点。
思路: 就是求“凸多边形的直径”。google一下,很多结果的啦。 首先要求出凸包,然后用一个比较牛逼的算法貌似可以在O(N)时间内求出凸包直径。 但是那算法太复杂啦,看了半天都看不懂,所以就枚举凸包每两个点之间的距离了。 还是能200+ms过,因为凸包求出来以后,N就大大减小了。
#include <stdio.h>
#include <stdlib.h>

 struct point {
short x, y;
};
struct point points[50024], *convex[50024];
int points_cnt, convex_cnt;

__inline void swap(struct point *a, struct point *b)
  {
struct point t = *a;
*a = *b;
*b = t;
}

__inline int cmp(struct point *p1, struct point *p2)
  {
int a, b, c, d, r;
a = p1->y - points[0].y;
b = p1->x - points[0].x;
c = p2->y - points[0].y;
d = p2->x - points[0].x;
r = a*d - b*c;
 if (!r) {
if (b)
return b - d;
return a - c;
}
return r;
}

__inline int turn_left(struct point *p1, struct point *p2, struct point *p3)
  {
return (int)p1->x*p2->y - (int)p1->x*p3->y - (int)p2->x*p1->y +
(int)p3->x*p1->y + (int)p2->x*p3->y - (int)p3->x*p2->y
>= 0;
}

void qs(struct point *arr, int len)
  {
int l, r, p;
if (len < 2)
return ;

l = 0;
p = len - 1;
r = len - 2;
 while (1) {
while (l < p && cmp(&arr[l], &arr[p]) < 0)
l++;
while (r >= 0 && cmp(&arr[r], &arr[p]) >= 0)
r--;
if (l > r)
break;
swap(&arr[l], &arr[r]);
}
swap(&arr[l], &arr[p]);

qs(arr, l);
qs(arr + l + 1, len - l - 1);
}

int main()
  {
int i, j, x, y, left, down, min_idx, max_val, val;

freopen("e:\\test\\in.txt", "r", stdin);

scanf("%d", &points_cnt);
left = down = 0x7fffffff;
 for (i = 0; i < points_cnt; i++) {
scanf("%d%d", &x, &y);
points[i].x = x;
points[i].y = y;
 if (x < left || (x == left) && y < down) {
left = x;
down = y;
min_idx = i;
}
}
swap(&points[0], &points[min_idx]);
qs(points + 1, points_cnt - 1);

convex_cnt = 0;
convex[convex_cnt++] = &points[0];
convex[convex_cnt++] = &points[1];
 for (i = 2; i < points_cnt; i++) {
while (convex_cnt >= 2 &&
!turn_left(convex[convex_cnt - 2],
convex[convex_cnt - 1],
&points[i]))
 {
convex_cnt--;
}
convex[convex_cnt++] = &points[i];
}

max_val = 0;
 for (i = 0; i < convex_cnt - 1; i++) {
 for (j = i + 1; j < convex_cnt; j++) {
x = convex[i]->x - convex[j]->x;
y = convex[i]->y - convex[j]->y;
val = x*x + y*y;
if (val > max_val)
max_val = val;
}
}
printf("%d\n", max_val);

return 0;
}

|