Exponentiation
Time Limit: 500MS |
|
Memory Limit: 10000K |
Total Submissions: 68964 |
|
Accepted: 16146 |
Description
Problems involving the computation of exact values of very large magnitude and precision are common. For example, the computation of the national debt is a taxing experience for many computer systems.
This problem requires that you write a program to compute the exact value of Rn where R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0 < n <= 25.
Input
The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.
Output
The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don't print the decimal point if the result is an integer.
Sample Input
95.123 12
0.4321 20
5.1234 15
6.7592 9
98.999 10
1.0100 12
Sample Output
548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201
虽然效率低点儿,但代码非常简单,容易实现,真正比赛还是很好用的。。。
import java.io.*;
import java.util.*;
import java.math.*;
public class Main{
public static void main( String args[] )
{
BigDecimal num;
int n;
String r;
Scanner cin = new Scanner(System.in);
while(cin.hasNextBigDecimal())
{
num = cin.nextBigDecimal();
n = cin.nextInt();
num = num.pow(n);
r = num.stripTrailingZeros().toPlainString();//BigDecimal.toPlainString 避免输出时产生科学计数法形式
if(r.startsWith("0."))
r = r.substring(1);
System.out.println(r);
}
}
}
posted on 2010-05-26 07:30
Vontroy 阅读(668)
评论(0) 编辑 收藏 引用 所属分类:
大数/高精度 、
POJ