假定矩形是用一对点表达的(minx, miny) (maxx, maxy),那么两个矩形
    rect1{(minx1, miny1)(maxx1, maxy1)}
    rect2{(minx2, miny2)(maxx2, maxy2)}  
相交的结果一定是个矩形,构成这个相交矩形rect{(minx, miny) (maxx, maxy)}的点对坐标是:  
    minx   =   max(minx1,   minx2)  
    miny   =   max(miny1,   miny2)  
    maxx   =   min(maxx1,   maxx2)  
    maxy   =   min(maxy1,   maxy2)  
   
如果两个矩形不相交,那么计算得到的点对坐标必然满足:  
  ( minx  >  maxx ) 或者 ( miny  >  maxy ) 
   
判定是否相交,以及相交矩形是什么都可以用这个方法一体计算完成。
从这个算法的结果上,我们还可以简单的生成出下面的两个内容:
㈠ 相交矩形:  (minx, miny) (maxx, maxy)
㈡ 面积: 面积的计算可以和判定一起进行
        if ( minx>maxx ) return 0;
        if ( miny>maxy ) return 0;
        return (maxx-minx)*(maxy-miny)